Advertisement

Wireless Personal Communications

, Volume 95, Issue 1, pp 187–213 | Cite as

Sub-GHz LPWAN Network Coexistence, Management and Virtualization: An Overview and Open Research Challenges

  • Eli De Poorter
  • Jeroen Hoebeke
  • Matthias Strobbe
  • Ingrid Moerman
  • Steven Latré
  • Maarten Weyn
  • Bart Lannoo
  • Jeroen Famaey
Article

Abstract

The IoT domain is characterized by many applications that require low-bandwidth communications over a long range, at a low cost and at low power. Low power wide area networks (LPWANs) fulfill these requirements by using sub-GHz radio frequencies (typically 433 or 868 MHz) with typical transmission ranges in the order of 1 up to 50 km. As a result, a single base station can cover large areas and can support high numbers of connected devices (>1000 per base station). Notorious initiatives in this domain are LoRa, Sigfox and the upcoming IEEE 802.11ah (or “HaLow”) standard. Although these new technologies have the potential to significantly impact many IoT deployments, the current market is very fragmented and many challenges exists related to deployment, scalability, management and coexistence aspects, making adoption of these technologies difficult for many companies. To remedy this, this paper proposes a conceptual framework to improve the performance of LPWAN networks through in-network optimization, cross-technology coexistence and cooperation and virtualization of management functions. In addition, the paper gives an overview of state of the art solutions and identifies open challenges for each of these aspects.

Keywords

Sub-GHz networks LPWAN LoRa SigFox IEEE 802.11ah DASH7 Coexistence Network management Virtualization Scalability QoS Energy efficiency 

Notes

Acknowledgements

This work was carried out in the context of following projects. IDEAL-IoT (Intelligent DEnse And Longe range IoT networks) is an SBO project funded by the Fund for Scientific Research-Flanders (FWO-V) under Grant Agreement #S004017N. ‘Processing visual sensor data in low-power wide area networks’ is a project funded by the Fund for Scientific Research-Flanders (FWO-V) under Grant Agreement #G084177N. The UGent GOA “Disposable and biodegradable wireless networks for extreme conditions” project. The H2020 eWINE project under Grant Agreement Number 688116.

References

  1. 1.
    (2015). LoRaWAN: What is it? A technical overview of LoRa and LoRaWAN, a technical overview of LoRa and LoRaWAN, LoRa Alliance Technical Marketing Workgroup 1.0.Google Scholar
  2. 2.
    WG802.11—Wireless LAN Working Group, 802.11ah-2016—IEEE Approved Draft Standard for Information Technology. https://standards.ieee.org/findstds/standard/802.11ah-2016.html. February 2017 release.
  3. 3.
    Park, M. (2015). IEEE 802.11ah: Sub-1-GHz license-exempt operation for the internet of things. IEEE Communication Magazine, 53(9), 145–151.CrossRefGoogle Scholar
  4. 4.
    Tian, L., Famaey, J., & Latré, L. (2016). Evaluation of the IEEE 802.11ah restricted access window mechanism for dense IoT networks. In IEEE international symposium on a world of wireless, mobile and multimedia networks (WoWMoM).Google Scholar
  5. 5.
    Chang, K. H., & Mason, B. (2012). The IEEE 802.15.4g standard for smart metering utility networks. In 2012 IEEE third international conference on smart grid communications, Tainan (pp. 476–480).Google Scholar
  6. 6.
    Dujovne, D., Watteyne, T., Vilajosana, X., & Thubert, P. (2014). 6TiSCH: Deterministic IP-enabled industrial internet (of things). IEEE Communications Magazine, 52(12), 36–41.CrossRefGoogle Scholar
  7. 7.
    Watteyne, T., Mehta, A., & Pister, K. (2009). Reliability through frequency diversity: Why channel hopping makes sense. In 6th ACM symposium on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks.Google Scholar
  8. 8.
    Shin, K., Park, I., Hong, J., Har, D., & Cho, D. (2015). Per-node throughput enhancement in Wi-Fi densenets. IEEE Communications Magazine, 53(1), 118–125.CrossRefGoogle Scholar
  9. 9.
    Weyn, M. (2016). Low power wide area networks. Last accessed May 18, 2016, from https://sites.google.com/a/wesdec.be/mweyn/lpwan.
  10. 10.
    Daneels, G., Famaey, J., Bohez, S., Simoens, P., & Latré, S. (2015). Upstream content scheduling in Wi-Fi densenets during large-scale events. In IEEE globecom workshop on enabling technologies in future wireless local area networks (ETFWLAN).Google Scholar
  11. 11.
    Zats, S., Su, R., Watteyne, T., & Pister, K. S. J. (2011). Scalability of time synchronized wireless sensor networking. In 37th Annual conference of the IEEE Industrial Electronics Society (pp. 3011–3016).Google Scholar
  12. 12.
    Palattella, M. R., Accettura, N., Dohler, M., Grieco, L. A., & Boggia, G. (2012). Traffic aware scheduling algorithm for reliable low-power multi-hop IEEE 802.15.4e networks. In IEEE 23rd international symposium on personal, indoor and mobile radio communications - (PIMRC) (pp. 327–332). doi: 10.1109/PIMRC.2012.6362805 
  13. 13.
    Dujovne, D., et al. (2014). 6TiSCH on-the-fly scheduling. Internet-Draft [work-in-progress], IETF Std., Rev. draft-dujovne-6tisch-on-the-fly-02, Feb 14, 2014.Google Scholar
  14. 14.
    Tian, L., Latré, L., & Famaey, J. (2016). Implementation and validation of an IEEE 802.11ah module for NS-3. In Workshop on ns-3 (WNS3).Google Scholar
  15. 15.
    Ogawa, K., Morikura, M., Yamamoto, K., & Sugihara, T. (2013). IEEE 802.11ah based M2M networks employing virtual grouping and power saving methods. IEICE Transactions on Communications, 96(12), 2976–2985.CrossRefGoogle Scholar
  16. 16.
    Qutab-ud-din, M., Hazmi, A., Badihi, B., Larmo, A., Torsner, J., & Valkama, M. (2015). Performance analysis of IoT-enabling IEEE 802.11ah technology and its RAW mechanism with non-cross slot boundary holding schemes. In IEEE 16th international symposium on a world of wireless, mobile and multimedia networks (WoWMoM).Google Scholar
  17. 17.
    Park, M. (2014). IEEE 802.11ah: Energy efficient MAC protocols for long range wireless LAN. In IEEE international conference on communications (ICC) (pp. 2388–2393).Google Scholar
  18. 18.
    Park, C. W., Hwang, D., & Lee, T.-J. (2014). Enhancement of IEEE 802.11ah MAC for M2M communications. IEEE Communications Letters, 18(7), 1151–1154.CrossRefGoogle Scholar
  19. 19.
    Lei, X., & Rhee, S. H. (2017). Wireless Personal Communications, 93, 933. doi: 10.1007/s11277-017-3947-3.CrossRefGoogle Scholar
  20. 20.
    Liang, C., & Yu, F. (2015). Wireless network virtualization: A survey, some research issues and challenges. IEEE Communications Surveys Tutorials, 17(1), 358–380.CrossRefGoogle Scholar
  21. 21.
    Granelli, F., Gebremariam, A., Usman, M., Cugini, F., Stamati, V., Alitska, M., & Chatzimisios, P. (2015). Software defined and virtualized wireless access in future wireless networks: Scenarios and standards. IEEE Communications Magazine, 53(6), 26–34.CrossRefGoogle Scholar
  22. 22.
    Yang, M., Jin, Y., Zeng, L., Wu, X., & Vasilakos, A. (2015). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications, 20(4–18), 2015.Google Scholar
  23. 23.
    Paventhan, A., Krishna, H., Pahuja, N., Khan, M. F., & Jain, A. (2015). Experimental evaluation of IETF 6TiSCH in the context of smart grid. In IEEE 2nd world forum on internet of things (WF-IoT) (pp. 530–535).Google Scholar
  24. 24.
    Duquennoy, S., Al Nahas, B., Landsiedel, O., & Watteyne, T. (2015). Orchestra: Robust mesh networks through autonomously scheduled TSCH. In Proceedings of the 13th ACM conference on embedded networked sensor systems (pp. 337–350).Google Scholar
  25. 25.
    Liu, Y.-H., Huang, X., Vidojkovic, M., Ba, A., Harpe, P., Dolmans, G., & Groot, H. D. (2013). A 1.9 nJ/b 2.4 GHz multistandard (bluetooth low energy/zigbee/IEEE802.15.6) transceiver for personal/body-area networks. In ISSCC 2013.Google Scholar
  26. 26.
    Wong, A. C. W., Dawkins, M., Devita, G., Kasparidis, N., Katsiamis, A., King, O., et al. (2013). A 1 V 5 mA multimode IEEE 802.15.6/bluetooth low-energy WBAN transceiver for biotelemetry applications. IEEE Journal of Solid-State Circuits, 48(1), 186–198.CrossRefGoogle Scholar
  27. 27.
    Fabbro, P. D., et al. (2010). A 0.8 V 2.4 GHz 1 Mb/s GFSK RF transceiver with on-chip DC–DC converter in a standard 0.18 µm CMOS technology. In Proceedings of ESSCIRC, Sept 14–16, 2010. doi: 10.1109/ESSCIRC.2010.5619742.
  28. 28.
    Das, K., Mathews, E., Zand, P., Sanchez Ramirez, A., & Havinga, P. Efficient I/O joining and reliable data publication in energy harvested ISA100.11a network. In IEEE international conference on industrial technology (ICIT).Google Scholar
  29. 29.
    Yang, D., Xu, Y., & Gidlund, M. (2011). Wireless coexistence between IEEE 802.11- and IEEE 802.15.4-based networks: A survey. International Journal of Distributed Sensor Networks. doi: 10.1155/2011/912152 Google Scholar
  30. 30.
    Challoo, R., Oladeinde, A., Yilmazer, N., Ozcelik, S., & Challoo, L. (2012). An overview and assessment of wireless technologies and coexistence of ZigBee, Bluetooth and Wi-Fi devices. Procedia Computer Science, 12, 386–391.CrossRefGoogle Scholar
  31. 31.
    Pollin, S., Tan, I., Hodge, B., & Bahai, A. (2008). Harmful coexistence between 802.15.4 and 802.11: A measurement-based study. In 3rd international conference on cognitive radio oriented wireless networks and communications (CrownCom 2008) (pp. 1–6).Google Scholar
  32. 32.
    Lakshminarayanan, K., Sapra, S., Seshan, S., & Steenkiste, P. (2009). Rfdump: An architecture for monitoring the wireless ether. In Proceedings of the 5th ACM international conference on emerging networking experiments and technologies (CoNEXT).Google Scholar
  33. 33.
    Hermans, F., Larzon, L.-A., Rensfelt, O., & Gunningberg, P. (2012). A lightweight approach to online detection and classification of interference in 802.15.4-based sensor networks. In ACM SIGBED Review—Special Issue on the 3rd International Workshop on Networks of Cooperating Objects (CONET).Google Scholar
  34. 34.
    Zhou, R., Xiong, Y., Xing, G., Sun, L., & Ma, J. (2010). Zifi: Wireless LAN discovery via ZigBee interference signatures. In Proceedings of the sixteenth annual international conference on mobile computing and networking. MobiCom ‘10 (pp. 49–60). New York: ACM.Google Scholar
  35. 35.
    Rayanchu, S., Patro, A., & Banerjee, S. (2011). Airshark: Detecting non-WiFi RF devices using commodity WiFi hardware. In Proceedings of the ACM SIGCOMM conference on internet measurement conference. IMC ’11 ( pp. 137–154). New York: ACM.Google Scholar
  36. 36.
    Huang, J., Xing, G., Zhou, G., & Zhou, R. (2010). Beyond co-existence: Exploiting WiFi white space for Zigbee performance assurance. In 18th IEEE international conference on network protocols (pp. 305–314).Google Scholar
  37. 37.
    Javed, Q., & Prakash, R. (2013). CHAMELEON: A framework for coexistence of wireless technologies in an unlicensed band. Wireless Personal Communications, 77(1), 777–808.CrossRefGoogle Scholar
  38. 38.
    Tytgat, L., Yaron, O., Pollin, S., Moerman, I., & Demeester, P. (2015). Analysis and experimental verification of frequency-based interference avoidance mechanisms in IEEE 802.15.4. IEEE/ACM Transactions on Networking, 23(2), 369–382.CrossRefGoogle Scholar
  39. 39.
    Correia, L. H. A., Tran, T.-D., Pereira, V. N. S. S., Giacomin, J. C., & Sá Silva, J. M. (2015). DynMAC: A resistant MAC protocol to coexistence in wireless sensor networks. Computer Networks, 76, 1–16.CrossRefGoogle Scholar
  40. 40.
    Hayashi, H. (2015). Standardization of wireless coexistence in industrial automation. In 2015 54th Annual conference of the Society of Instrument and Control Engineers of Japan (SICE) (pp. 968–973).Google Scholar
  41. 41.
    Chiwewe, T. M., Mbuya, C. F., & Hancke, G. P. (2015). Using cognitive radio for interference-resistant industrial wireless sensor networks: An overview. IEEE Transactions on Industrial Informatics, 11(6), 1466–1481.CrossRefGoogle Scholar
  42. 42.
    De Valck, P., Moerman, I., Croce, D., Giuliano, F., Tinnirello, I., Garlisi, D., De Poorter, E., & Jooris, B. (2014). Exploiting programmable architectures for WiFi/ZigBee inter-technology cooperation. EURASIP Journal on Wireless Communications and Networking, 2014, 212.CrossRefGoogle Scholar
  43. 43.
    Chebrolu, K., & Dhekne, A. (2009). Esense: Communication through energy sensing. In Proceedings of the 15th annual international conference on mobile computing and networking (MobiCom ‘09) (pp. 85–96). New York, NY: ACM.Google Scholar
  44. 44.
    Fischer, A., Botero, J., Till Beck, M., de Meer, H., & Hesselbach, X. (2013). Virtual network embedding: A survey. IEEE Communications Surveys & Tutorials, 15(4).Google Scholar
  45. 45.
    Lin, T., Bannazadeh, H., & Leon-Garcia, A. (2015). Introducing wireless access programmability using software-defined infrastructure. In IFIP/IEEE international symposium on integrated network management (IM) (pp. 585–591).Google Scholar
  46. 46.
    Guo, K., Sanadhya, S., & Woo, T. (2015). Vifi: Virtualizing WLAN using commodity hardware. ACM SIGMOBILE Mobile Computing and Communications Review, 18(3), 41–48.CrossRefGoogle Scholar
  47. 47.
    Pelov, A., Toutain, L., & Delibie, Y. (2016). Constrained signaling over LP-WAN. Internet Engineering Task Force draft. https://tools.ietf.org/html/draft-pelov-core-cosol-01. Feb 17, 2016.
  48. 48.
    Van den Abeele, F., Hoebeke, J., Moerman, I., & Demeester, P. (2014). Fine-grained management of CoAP interactions with constrained IoT devices. In IEEE/IFIP network operations and management symposium, proceedings (pp. 1–5).Google Scholar
  49. 49.
    Bonomi, F., et al. (2012). Fog computing and its role in the internet of things. In Proceedings of the first edition of the MCC workshop on mobile cloud computing (pp. 13–16). Helsinki: ACM.Google Scholar
  50. 50.
    Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., & Young, V. (2015). Mobile edge computing—A key technology towards 5G. ETSI White Paper (11).Google Scholar
  51. 51.
    Baldo, N., Tamma, B. R., Manoj, B., Rao, R., & Zorzi, M. (2009). A neural network based cognitive controller for dynamic channel selection. In IEEE international conference on communications, 2009. ICC’09 (pp. 1–5). IEEE.Google Scholar
  52. 52.
    Zorzi, M., Zanella, A., Testolin, A., De Filippo De Grazia, M., & Zorzi, M. (2015). Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence. IEEE Access, 3, 1512–1530.CrossRefGoogle Scholar
  53. 53.
    Kulin, M., Fortuna, C., De Poorter, E., Deschrijver, D., & Moerman, I. (2016). Data-driven design of intelligent wireless networks: An overview and tutorial. Sensors Journal, 16(6), 790.CrossRefGoogle Scholar
  54. 54.
    Compton, R., Mehari, M. T., Colbourn, C. J., De Poorter, E., & Syrotiuk, V. R. (2016). Screening interacting factors in a wireless network testbed using locating arrays. In The international workshop on computer and networking experimental research, IEEE conference on computer communications workshops (INFOCOM WKSHPS).Google Scholar
  55. 55.
    Munawar, W., Alizai, M. H., Landsiedel, O., & Wehrle, K. (2010). Dynamic TinyOS: Modular and transparent incremental code-updates for sensor networks. In IEEE ICC 2010, May 23–27.Google Scholar
  56. 56.
    Marrón, P. J., Gauger, M., Lachenmann, A., Minder, D., Saukh, O., & Rothermel, K. (2006). FlexCup: A flexible and efficient code update mechanism for sensor networks. In EWSN 2006, Feb 13–15.Google Scholar
  57. 57.
    Ruckebusch, P., De Poorter, E., Fortuna, C., & Moerman, I. (2016). GITAR: Generic extension for Internet-of-Things architectures enabling dynamic updates of network and application modules. Ad Hoc Networks, 36(P1), 127–151.CrossRefGoogle Scholar
  58. 58.
    Ishaq, I., Hoebeke, J., Moerman, I., & Demeester, P. (2016). Observing CoAP groups efficiently. Ad Hoc Networks, 37(part 2), 368–388.CrossRefGoogle Scholar
  59. 59.
    Ishaq, I., Hoebeke, J., Van den Abeele, F., Rossey, J., Moerman, I., & Demeester, P. (2014). Flexible unicast-based group communication for CoAP-enabled devices. Sensors, 14(60), 9833–9877.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Eli De Poorter
    • 1
  • Jeroen Hoebeke
    • 1
  • Matthias Strobbe
    • 1
  • Ingrid Moerman
    • 1
  • Steven Latré
    • 2
  • Maarten Weyn
    • 2
  • Bart Lannoo
    • 2
  • Jeroen Famaey
    • 2
  1. 1.IDLabGhent University – imecGhentBelgium
  2. 2.IDLabUniversity of Antwerp – imecAntwerpBelgium

Personalised recommendations