Skip to main content
Log in

Penta-band Linear Tapered Feed Spiral Antenna Design and Radio Link Characterization for Vehicular Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Increasing mobility, safety and passenger comfort are very strong motivations for implementation of Intelligent Transportation Systems (ITS) in practice. The role of wireless communications in ITS has become compelling, both for industry and research community. Wireless communications technologies provide a platform for the exchange of data among the vehicles. A penta-band printed spiral antenna with tapered feed is proposed for vehicular communication system, facilitating vehicle-to-vehicle (V2V) and infrastructure to vehicle (I2V) communication. The antenna covers the navigational frequencies viz., 1.2, 1.5 GHz and Wireless Communication frequencies viz., 2.45, 3.3 GHz and Dedicated Short Range Communication frequency, 5.8 GHz for vehicular communications. Further, radio link characterization of I2V and V2V propagation channel is carried out using Electromagnetic propagation tool, and compared with empirical path loss models of ITU, two-ray reflection and inter-vehicle models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Molisch, A. F., Tufvesson, F., Karedal, J., & Mecklenbrauker, C. F. (2009). A survey on vehicle-to-vehicle propagation channel. Proceedings of the IEEE Wireless Communications, 16(6), 12–22.

    Article  Google Scholar 

  2. Santa, J., Gomez-Skarmeta, A. F., & Sanchez-Artigas, M. (2008). Architecture and evaluation of a unified V2V and V2I communication system based on cellular networks. Computer Communications, 31(12), 2850–2861.

    Article  Google Scholar 

  3. Gerla, M., & Kleinrock, L. (2011). Vehicular networks and the future of the mobile interne. Computer Networks, 55(2), 457–469.

    Article  Google Scholar 

  4. Ijiguchi, T., Kanemoto, D., Yoshitomi, K., Yoshida, K., Ishikawa, A., Fukagawa, S., et al. (2014). Circularly polarized one-sided directional slot antenna with reflector metal for 5.8-GHz DSRC operations. IEEE Antennas and Wireless Propagation Letters, 13, 778–781.

    Article  Google Scholar 

  5. Wen-bo, Z., Xiang-yang, L., & Ji-xiang, L. (2013). A dual-band RFID slot tag antenna for ITS application. In IEEE 3rd international conference on in consumer electronics, communications and networks (CECNet) (pp. 5–7).

  6. Fujimoto, T., & Tanaka, D. (2013). An L-probe fed stacked rectangular microstrip antenna combined with a ring antenna for triple band operation in ITS. Progress In Electromagnetics Research C, 37, 1–13.

    Article  Google Scholar 

  7. Fujimoto, T., & Nakanishi, R. (2011). Stacked rectangular microstrip antenna for triple band (GPS/VICS/ETC) operation in ITS. In IEEE international symposium on antennas and propagation (APSURSI) (pp. 175–178).

  8. Koch, N. (2012). Antennas for automobiles. INTECH Open Access Publisher.

  9. Alsath, M., & Kanagasabai, M. (2014). A shared-aperture multiservice antenna for automotive communications. IEEE Antennas and Wireless Propagation Letters, 13, 1417–1420.

    Article  Google Scholar 

  10. Lee, W., Hong, Y. K., Lee, J. J., Park, J. H., & Seong, W. (2015). Omnidirectional low-profile multiband antenna for vehicular telecommunication. Progress in Electromagnetics Research Letters, 51, 53–59.

    Article  Google Scholar 

  11. Rahman, T., Zhaowen, Y., & Youcef, H. (2013). A dual band monopole microstriop printed antenna for WLAN (2.4/5.2/5.8 GHz) application. In IEEE international conference on microwave technology & computational electromagnetics (ICMTCE) (pp. 204–207).

  12. Gamage, J. K., Engjom, M., & Jensen, I. A. (2013). Design of a low profile multi-band antenna for vehicular communication system. In IEEE 7th European conference on antennas and propagation (EuCAP) (pp. 1273–1277).

  13. Kumari, R., & Kumar, M. (2013). Design of multiband antennas for wireless communication. In IEEE international conference on communication systems and network technologies (CSNT) (pp. 1–6).

  14. Raj, V. D., Prasad, A. M., Satyanarayana, M., & Prasad, G. M. V. (2015). Implementation of printed microstrip apollonian gasket fractal antenna for multi band wireless applications. In IEEE international conference on signal processing and communication engineering systems (SPACES) (pp. 200–204).

  15. Haj-Ahmed, M. A., & Abedelazeez, M. K. (2011). Design of a multi-band loop antenna for wireless communications: Simulation and analysis. Journal of King Saud University-Engineering Sciences, 23(1), 67–73.

    Article  Google Scholar 

  16. Kenney, J. B. (2011). Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the IEEE, 99(7), 1162–1182.

    Article  Google Scholar 

  17. Yuan, H., Qu, S., Zhang, J., Zhou, H., Wang, J., Ma, H., et al. (2014). Dual-band dual-polarized spiral antenna for chinese compass navigation satellite system. Progress in Electromagnetics Research Letters, 46, 25–30.

    Article  Google Scholar 

  18. Yadav, R. (2014). Design of tunable monopole arm planar spiral antenna for cognitive radio (p. 593194). ID: Advances in Electrical Engineering.

    Google Scholar 

  19. Ge, Y., Esselle, K. P., & Bird, T. S. (2006). A spiral-shaped printed monopole antenna for mobile communications. In IEEE antennas and propagation society international symposium (pp. 3681–3684).

  20. Kimiagarov, N., & Matzner, H. (2009). A wide band flat spiral antenna with planar unbalanced feed. In IEEE international conference on microwaves, communications, antennas and electronics systems (pp. 1–4).

  21. Huang, H.-F., & Lv, Z. (2014). A spiral antenna with integrated parallel-plane feeding structure. Progress in Electromagnetics Research Letters., 45, 45–50.

    Article  Google Scholar 

  22. Viriyasitavat, W., Boban, M., Tsai, H. M., & Vasilakos, A. (2015). Vehicular communications: survey and challenges of channel and propagation models. IEEE Vehicular Technology Magazine, 10(2), 55–66.

    Article  Google Scholar 

  23. Boban, M., Barros, J., & Tonguz, O. (2014). Geometry-based vehicle-to-vehicle channel modeling for large-scale simulation. IEEE Transactions on Vehicular Technology, 63(9), 4146–4164.

    Article  Google Scholar 

  24. Molisch, A. F., & Tufvesson, F. (2014). Propagation channel models for next-generation wireless communications systems. IEICE Transactions on Communications, 97(10), 2022–2034.

    Article  Google Scholar 

  25. (2009). Guidelines for evaluation of radio interface technologies for IMT-advanced. Report ITU-R M. 2135-1.

  26. Rappaport, T. S. (1996). Wireless communications: principles and practice (Vol. 2). New Jersey: Prentice hall PTR.

    MATH  Google Scholar 

  27. Karedal, J., Czink, N., A, A., Tufvesson, F., & Molisch, A. F. (2011). Path loss modeling for vehicle-to-vehicle communications. IEEE Transactions on Vehicular Technology, 60(1), 323–328.

    Article  Google Scholar 

  28. Waterhouse, R., (2008). Printed antennas for wireless communications, (Vol. 19). NJ: Wiley.

  29. Bancroft, R. (2009). Microstrip and printed antenna design. Stevenage: The Institution of Engineering and Technology.

    Book  Google Scholar 

  30. http://www.remcom.com/wireless-insite

  31. CEN. (2004). Road Transport and traffic telematics—dedicated short range communication—physical layer using microwave at 5.8 GHz.

  32. http://www.air802.com/files/FCC-Rules-and-Regulations.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramya Vijay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijay, R., Rama Rao, T. Penta-band Linear Tapered Feed Spiral Antenna Design and Radio Link Characterization for Vehicular Communications. Wireless Pers Commun 96, 3063–3080 (2017). https://doi.org/10.1007/s11277-017-4341-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4341-x

Keywords

Navigation