Skip to main content
Log in

Adaptive Rateless Coding Technique for Data Dissemination in Multichannel Multiuser Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we study rateless coding technique for secondary user communication in a multi-channel multi-user cognitive radio network. Generally, a multi-channel multi-user cognitive radio system is a wireless network comprising several secondary users and one or more primary users. In order to combat with interference due to the appearance of either primary users or other secondary users, we assign rateless codes to each secondary user to transmit its input data packets. Rateless codes are a class of channel codes with exceptional performance in both erasure and noisy channels. However, when some input data packets have been reconstructed at the decoder or already known at the receiver, the code efficiency decreases as a result of repeated transmission of the encoded packets. This has led us to propose algorithms based on a novel type of these codes called adaptive rateless codes to improve the performance of secondary users in terms of throughput. Simulation results demonstrate the efficiency of the proposed algorithms on secondary users communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. If \( P_{i} \ne P_{j} \), following (6) and the probability theory, we have to compute the pdf and cdf of \( \gamma_{i} (u) = \frac{{G_{i,i} }}{{\sum\nolimits_{j \ne i,j = 1}^{u} {\frac{{P_{j} G_{j,i} }}{{P_{i} }} + \frac{\phi }{{P_{i} }}} }} \).

  2. In the literature of rateless codes, the number of input data packets is usually known at the receiver.

  3. The value of c must ensure a reasonable overhead for LT codes.

  4. The probabily of decoding failure is pre-determined at SUT i.

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE JSAC, 23(2), 201–220.

    Google Scholar 

  2. Sami, K. (2010). Coding for cognitive radio networks. Master’s degree project, Stockholm, Sweden.

  3. Elias, P. (1955). Coding for two noisy channels. In Proceedings of 3rd London symposium on information theory, London, UK (pp. 61–76).

  4. Kushwaha, H., Xing, Y., Chandramouli, R., & Heffes, H. (2008). Reliable multimedia transmission over cognitive radio networks using fountain codes. Proceedings-IEEE, 96(1), 155–165.

    Article  Google Scholar 

  5. Yue, G., & Wang, X. (2009). Anti-jamming coding techniques with application to cognitive radio. IEEE Transaction on Wireless Communication, 8(12), 5996–6007.

    Article  Google Scholar 

  6. Shayegh, F., & Soleymani, M. R. (2011). Rateless codes for cognitive radio in a virtual unlicensed spectrum. In 34th IEEE Sarnoff Symposium (pp. 1–5).

  7. Chen, S., Zhang, Z., Chen, X., & Wu, K. (2010). Distributed spectrum access in cognitive radio network employing rateless codes. In Proceedings of IEEE global telecommunications conference (GLOBECOM).

  8. MacKay, D. J. C. (2005). Fountain codes. IEE Proceedings Communications, 152(6), 1062–1068.

    Article  Google Scholar 

  9. Broderson, R. W., Wolisz, A., Cabric, D. Mishra, S. M., & Willkomm, D. (2004). CORVUS: A cognitive radio approach for usage of virtual unlicensed spectrum. White Paper.

  10. Chaoub, A., & Ibn-Elhaj, E. (2011). Markovian primary traffics in Cognitive Radio networks. In International conference on electrical and control engineering (ICECE) (pp. 5987–5991).

  11. Zhao, Q., & Sadler, B. (2007). A survey of dynamic spectrum access: Signal processing, networking, and regularity policy. IEEE Signal Processing Magazine, 24(3), 79–89.

    Article  Google Scholar 

  12. Zhang, W., Mallik, R. K., & Letaief, K. B. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transaction on Wireless Communication, 8, 5761–5766.

    Article  Google Scholar 

  13. Ganesan, G., & Li, Y. (2007). Cooperative spectrum sensing in cognitive radio, part I: Two user networks. IEEE Transaction on Wireless Communications, 6(6), 2204–2213.

    Article  Google Scholar 

  14. Hijaz, Z., Frost, V. S., & Davis, B. (2013). Probability density function of SINR in Nakagami-m fading with different channels. Technical Report, University of Kansas, Lawrence, Kansas..

  15. Mitzeumacher, M. (2004). Digital fountain: A survey and look forward. In IEEE information theory workshop, San Antonio, TX.

  16. Luby, M. (2002). LT codes. In Proceedings of 43rd annual IEEE symposium foundations of computer science (FOCS), Vancouver, BC, Canada (pp. 271–280).

  17. Shokrollahi, A. (2006). Raptor codes. IEEE Transactions on Information Theory, 52(6), 2551–2567.

    Article  MathSciNet  MATH  Google Scholar 

  18. MacKay, D. J. C. (2003). Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  19. Agarwal, S., Hagedorn, A., & Trachtenberg, A. (2008). Adaptive rateless coding under partial information. In Information theory and applications workshop (pp. 5–11).

  20. Hagedorn, A., Agarwal, S., Starobinski, D., & Trachtenberg, A. (2009). Rateless coding with feedback. In IEEE INFOCOM (pp. 1791–1799).

  21. Cassuto, Y., & Shokrollahi, A. (2015). Online fountain codes with low overhead. IEEE Transaction on Information Theory, 61, 3137–3149.

    Article  MathSciNet  MATH  Google Scholar 

  22. Cataldi, P., Shatarski, M. P., Grangetto, M., & Magli, E. (2006). Implementation and performance evaluation of LT and Raptor codes for multimedia applications. In Proceedings of international conference on intelligent information hiding and multimedia signal processing.

  23. Richardson, T. J., Shokrollahi, A., & Urbanke, R. L. (2001). Design of capacity-approaching irregular low-density parity-check codes. IEEE Transaction on Information Theory, 47(2), 619–637.

    Article  MathSciNet  MATH  Google Scholar 

  24. Beimel, A., Dolev, S., & Singer, N. (2007). RT oblivious erasure correcting. IEEE/ACM Transactions on Networking, 15(6), 1321–1332.

    Article  Google Scholar 

  25. Kamra, A., Misra, V., Feldman, J., & Rubenstein, D. (2006). Growth codes: Maximizing sensor network data persistence. In Proceedings of ACM SIGCOMM, New York, NY, USA (pp. 255–266).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Farrokhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrokhi, H., Pourmohammadi, I. Adaptive Rateless Coding Technique for Data Dissemination in Multichannel Multiuser Cognitive Radio Networks. Wireless Pers Commun 96, 2463–2484 (2017). https://doi.org/10.1007/s11277-017-4307-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4307-z

Keywords

Navigation