Design and Analysis of an OFDM-Based Short Reference Quadrature Chaos Shift Keying Communication System

Abstract

In this paper, a new non-coherent chaos-based digital communication system combined short reference Quadrature chaos shift keying with orthogonal frequency division multiplexing named (OFDM-SRQCSK) is presented. This system is an extension of short reference Quadrature chaos shift keying (SR-QCSK) modulation by sending parallel information sequences with one chaotic reference sequence over the selected subcarrier frequencies. The proposed system enhanced the spectral efficiency and the energy saving of the conventional QCSK and SR-QCSK systems. In the proposed system, the information rate and energy saving improvement factors are derived comparing with QCSK system. Furthermore, the bit error rate (BER) analytic expressions for OFDM-SRQCSK system are derived in additive white Gaussian noise (AWGN) and multipath Rayleigh fading channels. The simulation results proved that the BER analytics match the Monte-Carlo simulations with average relative differences about 0.07 and 0.1 dB under AWGN and multipath fading channel respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Xia, Y., Tse, C. K., & Lau, F. C. M. (2004). Performance of differential chaos-shift-keying digital communication systems over a multipath fading channel with delay spread. IEEE Transactions on Circuits and System, 51(12), 680–684.

    Article  Google Scholar 

  2. 2.

    Mandal, S., & Banerjee, S. (2004). Analysis and CMOS Implementation of a chaos-based communication system. IEEE Transactions on Circuits and Systems, 51, 1708–1722.

    Article  Google Scholar 

  3. 3.

    Kaddoum, G., & Shokraneh, F. (2015). Analog network coding for mult-user multi-carrier differential chaos shift keying communication system. IEEE Transactions on Wireless Communications, 14, 1492–1505.

    Article  Google Scholar 

  4. 4.

    Kennedy, M. P., Kolumban, G., Kis, G., & Jako, Z. (2000). Performance evaluation of FM-DCSK modulation in multipath environments. IEEE Transactions on Circuits and Systems- I: Fundamental Theory and Applications, 47(12), 1702–1711.

    Article  Google Scholar 

  5. 5.

    Galias, Z., & Maggio, G. M. (2001). Quadrature chaos-shift keying: theory and performance analysis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(12), 1510–1519.

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Yang, Hua, & Jiang, Guo-Ping. (2012). High-efficiency differential-chaos-shift-keying scheme for chaos-based noncoherent communication. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(5), 312–316.

    Article  Google Scholar 

  7. 7.

    Yang, Hua, & Jiang, Guo-Ping. (2013). Reference-modulated DCSK: A novel chaotic communication scheme. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(4), 232–236.

    Article  Google Scholar 

  8. 8.

    Zhang, G., Wang, Y., & Zhang, T. Q. (2014). A novel QAM-DCSK secure communication system. In International congress on image and signal processing (CISP) (pp. 994–999), Dalian.

  9. 9.

    Wang, L., Cai, G., & Chen, G. R. (2015). Design and performance analysis of a new multiresolution M-ary differential chaos shift keying communication system. IEEE Transactions on Wireless Communications, 14(9), 5197–5208.

    Article  Google Scholar 

  10. 10.

    Kaddoum, G., & Gagnon, F. (2012). Design of a high-data-rate differential chaos-shift keying system. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(7), 448–452.

    Article  Google Scholar 

  11. 11.

    Yang, Hua, Jiang, Guo-Ping, & Duan, Junyi. (2014). Phase-separated DCSK: A simple delay-component-free solution for chaotic communications. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(12), 967–971.

    Article  Google Scholar 

  12. 12.

    Kaddoum, G., Soujeri, E., Arcila, C., & Eshteiwi, K. (2015). I-DCSK: An improved non-coherent communication system architecture. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(9), 901–905.

    Article  Google Scholar 

  13. 13.

    Kaddoum, G., Soujeri, E., & Nijsure, Y. (2016). Design of a short reference non-coherent chaos-based communication systems. IEEE Transactions on Communications, 64(2), 680–689.

    Article  Google Scholar 

  14. 14.

    Huang, T., Wang, L., & Xu, W. (2016). Multilevel code-shifted differential-chaos-shift-keying system. IET Communications, 10(10), 1189–1195.

    Article  Google Scholar 

  15. 15.

    Lau, F., Cheong, K., & Tse, C. (2003). Permutation-based DCSK and multiple-access DCSK systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50(6), 733–742.

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Kaddoum, G., Gagnon, F., & Richardson, F.-D. (2012). Design of a secure multi-carrier DCSK system. In International symposium on wireless communication systems (ISWCS) (pp. 964–968).

  17. 17.

    Kaddoum, G., Richardson, F.-D., & Gagnon, F. (2013). Design and analysis of a multi-carrier differential chaos shift keying communication system. IEEE Transactions on Communications, 61(8), 3281–3291.

    Article  Google Scholar 

  18. 18.

    Li, S., Zhao, Y., & Wu, Z. (2015). Design and analysis of an OFDM-based differential chaos shift keying communication system. Journal of Communications, 10(3), 199–205.

    Article  Google Scholar 

  19. 19.

    Kaddoum, G., Richardson, F. D., Adouni, S., Gagnon, F., & Thibeault, C. (2013). Multi-user multi-carrier differential chaos shift keying communication system. In International wireless communication and mobile computing conference (IWCMC) (pp. 1798–1802).

  20. 20.

    Kaddoum, G., & Shokraneh, F. (2015). Analog network coding for multi-user multi-carrier differential chaos shift keying communication system. IEEE Transactions on Wireless Communications, 14(3), 1492–1505.

    Article  Google Scholar 

  21. 21.

    Kaddoum, G. (2016). Design and performance analysis of a multiuser OFDM based differential chaos shift keying communication system. IEEE Transactions on Communications, 64(1), 249–260.

    Article  Google Scholar 

  22. 22.

    Kaddoum, G., Charge, P., & Roviras, D. (2009). A methodology for bit-error prediction in chaos-based communication systems. Circuit, Systems and Signal Processing, 28(6), 925–944.

    Article  MATH  Google Scholar 

  23. 23.

    Yang, H., Tang, W. K. S., Chen, G., & Jiang, G. P. (2016). System design and performance analysis of orthogonal multi-level differential chaos shift keying modulation scheme. IEEE Transactions on Circuits and Systems I: Regular Paper, 63(1), 146–156.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fadhil S. Hasan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasan, F.S. Design and Analysis of an OFDM-Based Short Reference Quadrature Chaos Shift Keying Communication System. Wireless Pers Commun 96, 2205–2222 (2017). https://doi.org/10.1007/s11277-017-4293-1

Download citation

Keywords

  • Short reference chaos shift keying
  • Orthogonal frequency division multiplexing
  • Non-coherent chaos-based communication system
  • Multicarrier DCSK
  • Energy efficiency
  • High information rate
  • Performance analysis