Skip to main content
Log in

An Optimized Analysis of Localization Algorithm in Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Determining the position of the sensor node is the ultimate challenging one in wireless sensor networks (WSNs), which may perhaps lead a large localization error. To tackle this tricky, a novel Semi Definite Programming (SDP)—Multiplier method is proposed using time difference of arrival (TDOA) measurement in asynchronous networks. The SDP relaxation method is derived to prevaricate the optimal maximum likelihood (ML) convergence problem that will result in Lagrangian problem. Consequently, this problem can be optimally solved in a stress-free method which provides the value of multipliers. In this Relax and cut scheme, Lagrangian multiplier added in the objective function which gives the minimum value of the function that fulfills the relaxed constraints and reduce the execution time. Also to monitor the mobile target and to improve the energy of sensors, an optimization framework of selective approach algorithm has been used. The simulation result demonstrates that the proposed algorithm provides a better position estimation with less localization error and energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chenji, H., & Stoleru, R. (2013). Toward accurate mobile sensor network localization in noisy environments. IEEE Transactions on Mobile Computing, 12(6), 1094–1106.

    Article  Google Scholar 

  2. Lim, C. B., Kang, S. H., Cho, H. H., Park, S. W., & Park, J. G. (2010, August). An Enhanced Indoor Localization algorithm Based on IEEE 802.11 WLAN using RSSI and multiple parameters. In: Fifth International Conference on Systems and Networks Communications (ICSNC), 2010 (pp. 238–242). IEEE.

  3. Paul, A. S., & Wan, E. A. (2009). RSSI-based indoor localization and tracking using sigma-point Kalman smoothers. IEEE Journal of Selected Topics in Signal Processing, 3(5), 860–873.

    Article  Google Scholar 

  4. Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O., Moses, R. L., & Correal, N. S. (2005). Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, 22(4), 54–69.

    Article  Google Scholar 

  5. Xu, E., Ding, Z., & Dasgupta, S. (2011). Source localization in wireless sensor networks from signal time-of-arrival measurements. IEEE Transactions on Signal Processing, 59(6), 2887–2897.

    Article  MathSciNet  Google Scholar 

  6. Shen, J., Molisch, A. F., & Salmi, J. (2012). Accurate passive location estimation using TOA measurements. IEEE Transactions on Wireless Communications, 11(6), 2182–2192.

    Article  Google Scholar 

  7. Meng, W., Xie, L., & Xiao, W. (2013). Decentralized TDOA sensor pairing in multihop wireless sensor networks. IEEE Signal Processing Letters, 20(2), 181–184.

    Article  Google Scholar 

  8. Sayed, A. H., Tarighat, A., & Khajehnouri, N. (2005). Network-based wireless location: Challenges faced in developing techniques for accurate wireless location information. IEEE Signal Processing Magazine, 22(4), 24–40.

    Article  Google Scholar 

  9. Yang, K., Wang, G., & Luo, Z. Q. (2009). Efficient convex relaxation methods for robust target localization by a sensor network using time differences of arrivals. IEEE Transactions on Signal Processing, 57(7), 2775–2784.

    Article  MathSciNet  Google Scholar 

  10. Zhu, Y., Huang, D., & Jiang, A. (2008, May). Network localization using angle of arrival. In: IEEE International Conference on Electro/Information Technology, 2008. EIT 2008. (pp. 205–210). IEEE.

  11. Tseng, P. (2007). Second-order cone programming relaxation of sensor network localization. SIAM Journal on Optimization, 18(1), 156–185.

    Article  MathSciNet  MATH  Google Scholar 

  12. . Biswas, P., & Ye, Y. (2004, April). Semidefinite programming for ad hoc wireless sensor network localization. In: Proceedings of the 3rd international symposium on information processing in sensor networks (pp. 46–54). ACM.

  13. Bhatti, S., Xu, J., & Memon, M. (2011). Clustering and fault tolerance for target tracking using wireless sensor networks. IET Wireless Sensor Systems, 1(2), 66–73.

    Article  Google Scholar 

  14. Meng, C., Ding, Z., & Dasgupta, S. (2008). A semidefinite programming approach to source localization in wireless sensor networks. IEEE Signal Processing Letters, 15, 253–256.

    Article  Google Scholar 

  15. Xie, S., Wang, J., Hu, A., Gu, Y., & Xu, J. Positive semi-definite programming localization in wireless sensor networks.

  16. Yin, F., Fritsche, C., Gustafsson, F., & Zoubir, A. M. (2013). TOA-based robust wireless geolocation and Cramér-Rao lower bound analysis in harsh LOS/NLOS environments. IEEE Transactions on Signal Processing, 61(9), 2243–2255.

    Article  Google Scholar 

  17. Vaghefi, R. M., & Buehrer, R. M. (2013, May). Asynchronous time-of-arrival-based source localization. In: ICASSP (pp. 4086–4090).

  18. Shrivastava, N., Mudumbai, R., Madhow, U., & Suri, S. (2009). Target tracking with binary proximity sensors. ACM Transactions on Sensor Networks (TOSN), 5(4), 30.

    Article  Google Scholar 

  19. Li, S., Qin, Z., Shan, L., Zhang, R., & Yang, X. (2014). A survey on target tracking in well-deployed wireless sensor networks. Journal of Software, 9(5), 1255–1262.

    Google Scholar 

  20. Tsai, H. W., Chu, C. P., & Chen, T. S. (2007). Mobile object tracking in wireless sensor networks. Computer Communications, 30(8), 1811–1825.

    Article  Google Scholar 

  21. Ramya, K., Praveen Kumar, K., & Srinivas Rao, V. (2012). A survey on target tracking techniques in wireless sensor networks. International Journal of Computer Science and Engineering Survey, 3(4), 93–108.

    Article  Google Scholar 

  22. Ashourian, M., Woo, S., & Jeong, H. (2007). Performance evaluation of blind source separation schemes for separating sensor signals in a distributed network. In: International Conference on Convergence Information Technology, IEEE.

  23. Shrivastava, N., Madhow, R. M. U., & Suri, S. (2006). Target tracking with binary proximity sensors: fundamental limits, minimal descriptions, and algorithms. In: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems (pp. 251–264). ACM.

  24. Zhang, H., & Hou, J. C. (2005). Maintaining sensing coverage and connectivity in large sensor networks. Ad Hoc & Sensor Wireless Networks, 1(1–2), 89–124.

    Google Scholar 

  25. Cardei, M., & Wu, J. (2006). Energy-efficient coverage problems in wireless ad-hoc sensor networks. Computer Communications, 29(4), 413–420.

    Article  Google Scholar 

  26. Zou, Y., & Chakrabarty, K. (2004). Sensor deployment and target localization in distributed sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 3(1), 61–91.

    Article  Google Scholar 

  27. Alaybeyoglu, A., Dagdeviren, O., Erciyes, K., & Kantarci, A. (2009, September). Performance evaluation of cluster-based target tracking protocols for wireless sensor networks. In: 24th International Symposium on Computer and Information Sciences, 2009. ISCIS 2009. (pp. 357–362). IEEE.

  28. Demigha, O., Hidouci, W. K., & Ahmed, T. (2013). On energy efficiency in collaborative target tracking in wireless sensor network–a review. IEEE Communications Surveys & Tutorials, 15(3), 1210–1222.

    Article  Google Scholar 

  29. . Zhu, Y., Vikram, A., & Fu, H. (2012). On tracking multiple indistinguishable targets. In: 9th International Conference on Mobile Adhoc and Sensor Systems (MASS), 2012 IEEE (pp. 1–9). IEEE.

  30. . Goldenberg, D. K., Bihler, P., Cao, M., Fang, J., Anderson, B., Morse, A. S., & Yang, Y. R. (2006). Localization in sparse networks using sweeps. In: Proceedings of the 12th Annual International Conference on Mobile Computing and Networking (pp. 110–121). ACM.

  31. Kay, S. M. (2013). Fundamentals of statistical signal processing: Practical algorithm development (Vol. 3). New Jersey: Pearson Education.

    Google Scholar 

  32. Foy, W. H. (1976). Position-location solutions by Taylor-series estimation. IEEE Transactions on Aerospace and Electronic Systems, 12(2), 187–194.

    Article  Google Scholar 

  33. . Biswas, P., & Ye, Y. (2004). Semidefinite programming for ad hoc wireless sensor network localization. In: Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks (pp. 46–54). ACM.

  34. Alfakih, A. Y., Khandani, A., & Wolkowicz, H. (1999). Solving Euclidean distance matrix completion problems via semi definite programming. Computational Optimization and Applications, 12(1–3), 13–30.

    MathSciNet  MATH  Google Scholar 

  35. Vandenberghe, L., & Boyd, S. (1996). Semi definite programming. SIAM Review, 38(1), 49–95.

    Article  MathSciNet  MATH  Google Scholar 

  36. Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11(1–4), 625–653.

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhu, Y., Vikram, A., & Fu, H. (2014). On topology of sensor networks deployed for multitarget tracking. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1489–1498.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Mary Livinsa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Livinsa, Z.M., Jayashri, S. An Optimized Analysis of Localization Algorithm in Wireless Sensor Networks. Wireless Pers Commun 96, 1419–1435 (2017). https://doi.org/10.1007/s11277-017-4247-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4247-7

Keywords

Navigation