Skip to main content

Advertisement

Log in

Energy-Spectral-Efficiency Tradeoff in Interference-Limited Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Spectral efficiency (SE) is an important metric in traditional wireless network design. However, as the development of high-data rate services and rapid increase of energy consumption, energy efficiency (EE) has received more and more attention. In this paper, we investigate the EE–SE tradeoff problem in interference-limited wireless networks. Different from previous researches, we try to optimize EE and SE simultaneously. Firstly, the problem is formulated as a multi-objective optimization problem (MOP), with the constraint of transmit power limit. Then, we convert the MOP to a single-objective optimization problem by the weighted linear sum method. We present an algorithm utilizing difference between two convex functions programming (DCP) to handle with SE optimization problem (SD). EE optimization problem can be solved by an algorithm (EFD) consists of fractional programming embedded with DCP. While for EE–SE tradeoff problem, a particle swarm optimization algorithm is proposed (ESTP) to deal with it. Simulation results validate that the proposed algorithm can efficiently balance EE and SE by adjusting the value of weighted coefficient, which could be used to design a flexible energy efficient network in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu, S., Biaz, S., & Wang, H. (2012). Rate adaptation with loss diagnosis on IEEE 802.11 networks. International Journal of Communication Systems, 25(4), 515–528.

    Article  Google Scholar 

  2. Wang, H., Ko, K., & Woo, C. (2012). Maximized achievable rate of SINR-measurement-based spectrum sharing with binary feedback. International Journal of Communication Systems, 25(3), 404–413.

    Article  Google Scholar 

  3. Miao, G., Himayat, N., Li, Y., & Swami, A. (2009). Cross-layer optimization for energy-efficient wireless communications: A survey. Wireless Communications and Mobile Computing, 9(4), 529–542.

    Article  Google Scholar 

  4. Hasan, Z., Boostanimehr, H., & Bhargava, V. (2012). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys & Tutorials, 13(4), 520–540.

    Google Scholar 

  5. Miao, G., Himayat, N., Li, G., & Talwar, S. (2011). Distributed interference-aware energy-efficient power optimization. IEEE Transactions on Wireless Communications, 10(4), 1323–1333.

    Article  Google Scholar 

  6. Feng, D., Jiang, C., Lim, G., Cimini, L., Feng, G., & Li, G. (2013). A survey of energy-efficient wireless communications. IEEE Communications Surveys & Tutorials, 15(1), 167–178.

    Article  Google Scholar 

  7. Edler, T., & Lundberg, S. (2004). Energy efficiency enhancements in radio access networks. Ericsson Review, 81(1), 42–51.

    Google Scholar 

  8. Kumar, R., & Mieritz, L. (2007). Conceptualizing ‘green’ IT and data center power and cooling issues. Gartner, Research Paper G00150322.

  9. Chen, Y., Zhang, S., XU, S., & Li, G. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine, 49(6), 30–37.

    Article  Google Scholar 

  10. Meshkati, F., Poor, H., & Schwartz, S. (2007). Energy-efficient resource allocation in wireless networks. IEEE Signal Processing Magazine, 24(3), 58–68.

    Article  Google Scholar 

  11. Miao, G., Himayat, N., Li, G., & Bormann, D. (2008). Energy efficient design in wireless OFDMA. In Proceedings of IEEE ICC’08, pp. 3307–3312.

  12. Jiang, C., Shi, Y., Hou, Y., & Kompella, S. (2011). On optimal throughput energy curve for multi-hop wireless networks. In Proceedings of IEEE INFOCOM, pp. 1341–1349.

  13. Gur, G., & Alagoz, F. (2011). Green wireless communications via cognitive dimension: an overview. IEEE Network, 25(2), 50–56.

    Article  Google Scholar 

  14. Cui, S., Goldsmith, A., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 22(6), 1089–1098.

    Article  Google Scholar 

  15. Kim, H., Chae, C., de Veciana, G., & Heath, R. (2009). A cross-layer approach to energy efficiency for adaptive mimo systems exploiting spare capacity. IEEE Transactions on Wireless Communications, 8(8), 4264–4275.

    Article  Google Scholar 

  16. Miao, G., Himayat, N., & Li, G. (2010). Energy-efficient link adaptation in frequency-selective channels. IEEE Transactions on Communications, 58(2), 545–554.

    Article  Google Scholar 

  17. Xiong, C., Li, G., Zhang, S., Chen, Y., & Xu, S. (2011). Energy and spectral-efficiency tradeoff in downlink ofdma networks. IEEE Transactions on Wireless Communications, 10(11), 3874–3886.

    Article  Google Scholar 

  18. Deng, L., Rui, Y., Cheng, P., Zhang, J., Zhang, Q., & Li, M. (2013). A unified energy efficiency and spectral efficiency tradeoff metric in wireless networks. IEEE Communications Letters, 17(1), 55–58.

    Article  Google Scholar 

  19. Verdu, S. (2002). Spectral efficiency in the wideband regime. IEEE Transactions on Information Theory, 48(6), 1319–1343.

    Article  MathSciNet  MATH  Google Scholar 

  20. Shamai, S., & Verdu, S. (2001). The impact of frequency-flat fading on the spectral efficiency of CDMA. IEEE Transactions on Information Theory, 47(4), 1302–1327.

    Article  MathSciNet  MATH  Google Scholar 

  21. Onireti, O., Heliot, F., & Imran, M. (2012). On the energy efficiency-spectral efficiency trade-off in the uplink of comp system. IEEE Transactions on Wireless Communications, 11(2), 556–561.

    Article  Google Scholar 

  22. Heliot, F., Imran, M., & Tafazolli, R. (2012). On the energy efficiency spectral efficiency trade-off over the MIMO rayleigh fading channel. IEEE Transactions on Wireless Communications, 60(5), 1345–1356.

    Article  Google Scholar 

  23. Ng, D., Lo, E., & Schober, R. (2013). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communications, 62(4), 1801–1814.

    Google Scholar 

  24. Li, Z., Jiang, H., Pan, Z., Liu, N., & You, X. (2015). Energy spectral efficiency tradeoff in downlink OFDMA network. International Journal of Communication Systems, 28(8), 1450–1461.

    Article  Google Scholar 

  25. Rao, J., & Fapojuwo, A. (2009). On the tradeoff between spectral efficiency and energy efficiency of homogeneous cellular networks with outage constraint. IEEE Transactions on Vehicular Technology, 8(3), 1553C1563.

    Google Scholar 

  26. Kha, H., Tuan, H., & Nguyen, H. (2012). Fast global optimal power allocation in wireless networks by local DC programming. IEEE Transactions on Wireless Communications, 11(2), 510–515.

    Article  Google Scholar 

  27. Cui, S., Goldsmith, A., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transactions on Wireless Communications, 4(5), 2349–2360.

    Article  Google Scholar 

  28. Jibukumar, M., Datta, R., & Biswas, P. (2012). Busy tone contention protocol: A new high-throughput and energy-efficient wireless local area networkmedium access control protocol using busy tone. International Journal of Communication Systems, 25(8), 991–1014.

    Article  Google Scholar 

  29. Kwon, H., & Birdsall, T. (1986). Channel capacity in bits per joule. IEEE Journal of Oceanic Engineering, 11(1), 97–99.

    Article  Google Scholar 

  30. Marler, R., & Arora, J. (2004). Survey of multiobjective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26(6), 369–395.

    Article  MathSciNet  MATH  Google Scholar 

  31. Vucic, N., Shi, S., & Schubert, M. DC programming approach forresource allocation in wireless networks. In Proceedings of 2010 international symposium on on modeling and optimization in mobile, ad hoc and wirelessnetworks, pp. 380–386.

  32. Tuy, H. (1998). Convex analysis and global optimization. Dordrecht: Kluwer.

    Book  MATH  Google Scholar 

  33. Boyd, S. Sequential convex programming, Lecture slides and notes. http://www.stanford.edu/class/ee364b/lectures.html

  34. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  35. Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science, 13(7), 492–498.

    Article  MathSciNet  MATH  Google Scholar 

  36. Kennedy, J., Eberhart, R. (1995). Particle swarm optimization. In Proceedings of IJCNN’95, pp. 1942–1948.

  37. Eberhart, R., Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of MHS’95, pp. 39–43.

  38. Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization: An overview. Swarm Intelligence, 1(1), 33–57.

    Article  Google Scholar 

  39. Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In Proceedings of WCCI’98, pp. 69–73.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihang Li.

Additional information

This work was supported by the National Special Key Program (Grant Nos. 2011ZX03003-002-02, 2012ZX03003-010-002), the National Basic Research Program of China (973 Program 2012CB316004), the National Natural Science Foundation of China under Grant 61201170, the Research Fund of National Mobile Communications Research Laboratory, Southeast University (Nos. 2014A02, 2014A02), the Liuda Rencai Gaofeng of Jiangsu Province, Jiangsu Provincal Key Technology R&D Program (BE2012165), and Huawei Corp. Ltd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Jiang, H., Li, P. et al. Energy-Spectral-Efficiency Tradeoff in Interference-Limited Wireless Networks. Wireless Pers Commun 96, 5515–5532 (2017). https://doi.org/10.1007/s11277-017-4223-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4223-2

Keywords

Navigation