Cooperative Hybrid Spectrum Sharing: A NOMA-based Approach

Abstract

Non-orthogonal multiple (NOMA) access using successive interference cancellation and cognitive radio are two promising techniques for enhancing the spectrum efficiency and utilization for future wireless communication systems. This paper presents a NOMA-based cooperative hybrid spectrum sharing protocol for cognitive radio networks. A two phase decode-and- forward (DF) relaying scheme in a multi-relay scenario is considered. Each secondary transmitter is grouped into one of the two clusters: a non-cooperative cluster (NCC) and a cooperative cluster (CC). The cluster head (CH) of the CC working as the best DF relay for the primary system is permitted to transmit its own signal superimposed on the primary signal using a NOMA approach in exchange for cooperation. On the other hand, the CH of the NCC transmits in parallel with the primary system satisfying a predefined peak transmit power and peak interference power constraints that guarantee a given primary quality of the service requirement. It is demonstrated that the performances of both the primary and secondary systems increase with the increasing number of secondary nodes. The simulation and theoretical results affirm the efficacy of the proposed protocol compared to the traditional overlay and underlay models in terms of the outage probability and the ergodic capacity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    NTT DoCoMo (2012). Requirements, candidate solutions & technology roadmap for LTE rel-12 onward. 3GPP RWS-120010, June.

  2. 2.

    Mitola, J., & Maguire, G. Q, Jr. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  3. 3.

    Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transactions on Communications, E98.B(3), 403–414.

    Article  Google Scholar 

  4. 4.

    Choi, J. (2014). Non-orthogonal multiple access in downlink coordinated two-point systems. IEEE Communications Letters, 18(2), 313–316.

    Article  Google Scholar 

  5. 5.

    Otao, N., Kishiyama, Y., & Higuchi, K. (2012). Performance of non-orthogonal access with SIC in cellular downlink using proportional fair-based resource allocation. In Wireless communication systems (ISWCS), 2012 international symposium on (pp. 476–480). IEEE.

  6. 6.

    Ding, Z., Fan, P., & Poor, V. (2016). Impact of user pairing on 5G non-orthogonal multiple access downlink transmissions. IEEE Transactions on Vehicular Technology, 65(8), 6010–6023.

    Article  Google Scholar 

  7. 7.

    Han, Y., Pandharipande, A., & Ting, S. H. (2009). Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Transactions on Wireless Communications, 8(10), 4945–4950.

    Article  Google Scholar 

  8. 8.

    Shin, E.-H., & Kim, D. (2011). Time and power allocation for collaborative primary-secondary transmission using superposition coding. IEEE Communications Letters, 15(2), 196–198.

    Article  Google Scholar 

  9. 9.

    Kim, T., & Kim, D. (2012). Cooperative primary-secondary transmission using superposition coding and successive interference cancellation. In Computing, networking and communications (ICNC), 2012 international conference on (pp. 277–281).

  10. 10.

    Kader, M. F., Asaduzzaman, & Hoque, M. M. (2013). Hybrid spectrum sharing with cooperative secondary user selection in cognitive radio networks. KSII Transactions on Internet and Information Systems, 7(9), 2081–2100.

    Article  Google Scholar 

  11. 11.

    Han, Y., Ting, S. H., & Pandharipande, A. (2012). Cooperative spectrum sharing protocol with selective relaying system. IEEE Transactions on Communications, 60(1), 62–67.

    Article  Google Scholar 

  12. 12.

    Krikidis, I., Laneman, J. N., Thompson, J. S., & Mclaughlin, S. (2009). Protocol design and throughput analysis for multi-user cognitive cooperative systems. IEEE Transactions on Wireless Communications, 8(9), 4740–4751.

    Article  Google Scholar 

  13. 13.

    Dai, Z., Liu, J., & Long, K. (2014). Cooperative transmissions for secondary spectrum access in cognitive radios. International Journal of Communication Systems, 27(11), 2762–2774.

    Google Scholar 

  14. 14.

    Oh, J., & Choi, W. (2010). A hybrid cognitive radio system: A combination of underlay and overlay approaches. In Vehicular technology conference fall (VTC 2010-Fall), 2010 IEEE 72nd (pp. 1–5), IEEE.

  15. 15.

    Toroujeni, S. M. M., Sadough, S. M.-S., & Ghorashi, S. A. (2012). On time-frequency resource leasing in cognitive radio networks. Wireless Personal Communications, 65(3), 583–600.

    Article  Google Scholar 

  16. 16.

    Feng, W., & Jiang, W. (2015). Primary network interference compensation-based dynamic spectrum leasing and secondary network power control. Wireless Personal Communications, 82(2), 965–992.

    Article  Google Scholar 

  17. 17.

    Feng, X., Wang, H., & Wang, X. (2015). A game approach for cooperative spectrum sharing in cognitive radio networks. Wireless Communications and Mobile Computing, 15(3), 538–551.

    Article  Google Scholar 

  18. 18.

    Ma, K., Yang, J., Hu, G., & Guan, X. (2015). Cooperative relay-aware spectrum leasing based on nash bargaining solution in cognitive radio networks. International Journal of Communication Systems, 28(7), 1250–1264.

    Article  Google Scholar 

  19. 19.

    Ghasemi, A., & Sousa, E. S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6(2), 649–658.

    Article  Google Scholar 

  20. 20.

    Peha, J. M. (2005). Approaches to spectrum sharing. IEEE Communications Magazine, 43(2), 10–12.

    Article  Google Scholar 

  21. 21.

    Bletsas, A., Khisti, A., Reed, D. P., & Lippman, A. (2006). A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3), 659–672.

    Article  Google Scholar 

  22. 22.

    Rappaport, T. (2001). Wireless communications: Principles and practice (2nd ed.). Upper Saddle River, NJ: Prentice Hall PTR.

    Google Scholar 

  23. 23.

    Wang, H., Lee, J., Kim, S., & Hong, D. (2010). Capacity enhancement of secondary links through spatial diversity in spectrum sharing. IEEE Transactions on Wireless Communications, 9(2), 494–499.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01061075).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Md Fazlul Kader.

Appendix

Appendix

  1. 1.

    PDF and CDF of \(X=\frac{\alpha _0}{\alpha _1}\): Let \(\alpha _0\) and \(\alpha _1\), be two exponential distributed random variables with mean \(\lambda _0\) and \(\lambda _1\), respectively. Then the probability density function (PDF) and the cumulative density function (CDF) of \(X=\frac{\alpha _0}{\alpha _1}\) can be expressed as [23]:

    $$\begin{aligned} f_{X}(x)&=\frac{\lambda _0\lambda _1}{(\lambda _0+\lambda _1x)^2},x>0 \end{aligned}$$
    (45)
    $$\begin{aligned} F_{X}(Z)&=\int ^{Z}_0 \frac{\lambda _0\lambda _1}{(\lambda _0+\lambda _1x)^2}dx \nonumber \\&=\frac{Z\lambda _1}{\lambda _0+Z\lambda _1} \end{aligned}$$
    (46)
  2. 2.

    Calculating the value of \(\alpha _{ST_i-PR}\): Let \(R_P\) be the primary target rate.The value of \(\alpha _{ST_i-PR}\) can be calculated as follows:

    $$\begin{aligned} R_{P}= & {} \frac{1}{2}\log _2\left( 1+\frac{\rho \alpha _{ST_i-PR}\varPhi P_{ST}}{\rho \alpha _{ST_i-PR}(1-\varPhi )P_{ST}+\rho P_{int}+1}\right) \nonumber \\ 2^{2R_P}-1= & {} \frac{\rho \alpha _{ST_i-PR} \varPhi P_{ST}}{\rho \alpha _{ST_i-PR}(1-\varPhi ) P_{ST}+\rho P_{int}+1}\nonumber \\&\alpha _{ST_i-PR}=\frac{R_{th}(\rho P_{int}+1)}{\rho P_{ST} \{\varPhi -(1-\varPhi )R_{th}\}} \end{aligned}$$
    (47)

    where \(R_{th}=2^{2R_P}-1\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kader, M.F., Shin, S.Y. Cooperative Hybrid Spectrum Sharing: A NOMA-based Approach. Wireless Pers Commun 96, 1–21 (2017). https://doi.org/10.1007/s11277-017-4148-9

Download citation

Keywords

  • Non-orthogonal multiple access
  • Successive interference cancellation
  • Cognitive radio
  • Spectrum sharing
  • Cluster head
  • Outage probability
  • Ergodic capacity