Skip to main content
Log in

Analysis of Linear Network Coding in Cooperative Multi-hop Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We investigate the performance of two multi-hop network topologies in which two sources have independent information to be transmitted to a far off common destination. Linear network coding technique is used by the intermediate relays to transmit the combined information of two sources. The first topology contains nodes that are placed in a regular pattern and the transmission process is modeled with a quasi-stationary Markov chain. The relay nodes use decode and forward mechanism at each hop. We find the transition probability matrix of the Markov chain assuming that all the nodes have same transmit power and the channel is Rayleigh fading. The second random network topology has fixed number of nodes that are randomly placed in a strip-shaped network. The outage probability of each node is found and the state distribution at each hop is used to analyze the network coverage for a given signal-to-noise ratio margin. Theoretical results have been included that match with the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Scaglione, A., & Hong, Y. W. (2003). Opportunistic large arrays: Cooperative transmission in wireless multi-hop ad hoc networks to reach far distances. IEEE Transactions on Signal Processing, 51(8), 2082–2092.

    Article  Google Scholar 

  2. Hassan, S. A. (2013). Range extension using optimal node deployment in linear multi-hop cooperative networks. In IEEE radio and wireless symposium (RWS). Austin, Texas.

  3. Bacha, M., & Hassan, S. A. (2013). Distributed versus cluster-based cooperative linear networks: A range extension study in Suzuki fading environments. In Proceedings of the IEEE personal indoor and mobile radio communications (PIMRC) (pp. 976–980). London, UK.

  4. Ansari, R. I., & Hassan, S. A. (2014). Opportunistic large array with limited participation: An energy-efficient cooperative multi-hop network. In Proceedings of the IEEE international conference on computing, networking and communications (ICNC) (pp. 831–835). Honolulu, HI.

  5. Thanayankizil, L., Kailas, A., & Ingram, M. A. (2011). Opportunistic large array concentric routing algorithm (OLACRA) for upstream routing in wireless sensor networks. Elsevier, 9(7), 1140–1153.

    Google Scholar 

  6. Mergen, B. S., & Scaglione, A. (2005). A continuum approach to dense wireless networks with cooperation. In Proc. IEEE INFOCOM (pp. 2755–2763).

  7. Kailas, A., & Ingram, M. A. (2009). Alternating opportunistic large arrays in broadcasting for network lifetime extension. IEEE Transactions on Wireless Communication, 8(6), 2831–2835.

    Article  Google Scholar 

  8. Hassan, S. A., & Ingram, M. A. (2011). A quasi-stationary Markov Chain model of a cooperative multi-hop linear network. IEEE Transactions on Wireless Communications, 10(7), 2306–2315.

    Article  Google Scholar 

  9. Hussain, M., & Hassan, S. A. (2015). Performance of multi-hop cooperative networks subject to timing synchronization errors. IEEE Transactions on Communications, 63(3), 655–666.

    Article  Google Scholar 

  10. Hussain, M., & Hassan, S. A. (2015). The effects of multiple carrier frequency offsets on the performance of virtual MISO FSK systems. IEEE Signal Processing Letters, 22(7), 905–909.

    Article  Google Scholar 

  11. Haroon, M. B., & Hassan, S. A. (2015). A new approach for coverage analysis of multi-hop cooperative networks subject to lornormal-rice fading. International Journal of Distributed Sensor Networks, 2015,  341217.

    Article  Google Scholar 

  12. Omar, M. S., Raza, S. A., Kabir, S. H., Hussain, M., & Hassan, S. A. (2015). Experimental implementation of cooperative transmission range extension in indoor environments. In IEEE international wireless communications and mobile computing conference (IWCMC). Croatia.

  13. Shafi, Q., & Hassan, S. A. (2014). Interference analysis in cooperative multi-hop networks subject to multiple flows. IEEE/IFIP wireless days. Rio de Janeiro (accepted).

  14. Afzal, A., & Hassan, S. A. (2014). Stochastic modeling of cooperative multi-hop strip networks with fixed hop boundaries. IEEE Transactions on Wireless Communications, 13(8), 4146–4155.

    Article  Google Scholar 

  15. Omar, M. S., Raza, S. A., Kabir, S. H., & Hassan, S. A. (July 2016). Analysis of cooperative transmissions as an enabling technology for smart grid data aggregation: An experimental perspective. In IEEE conference on industrial informatics.

  16. Bianchi, G. (2014). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  17. Li, S., Yeung, R. W., & Cai, N. (2003). Linear network coding. IEEE Transactions on Information Theory, 49(2), 371–381.

    Article  MathSciNet  MATH  Google Scholar 

  18. Koetter, R., & Medard, M. (2003). An algebraic approach to network coding. IEEE/ACM Transactions on Networking, 11, 782–795.

    Article  Google Scholar 

  19. Hausl, C., Schreckenbach, F., Oikonomidis, I., & Bauch, G. (2005). Iterative network and channel decoding on a Tanner graph. In: Proc. 2005 IEEE allerton conf. commun., control, comput.

  20. Chen, Y., Kishore, K., & Li, J. (2006). Wireless diversity through network coding. In Proceedings of the IEEE wireless communications and networking conference (WCNC) (pp. 1681–1686).

  21. Xiao, M., & Aulin, T. (2009). Optimal decoding and performance analysis of a noisy channel network with network coding. IEEE Transactions on Communications, 57, 1402–1412.

    Article  Google Scholar 

  22. Xiao, M., & Skoglund, M. (2010). Multiple-user cooperative communications based on linear network coding. IEEE Transactions on Communications, 58, 3345–3351.

    Article  Google Scholar 

  23. Sagduyu, Y. E., & Ephremides, A. (2007). On joint MAC and network coding in wireless ad hoc networks. IEEE Transactions on Information Theory, 53(10), 3697–3713.

    Article  MathSciNet  MATH  Google Scholar 

  24. Duyck, D., Capirone, D., Boutros, J., & Moeneclaey, M. (2010). Analysis and construction of full-diversity joint network-LDPC codes for cooperative communications. EURASIP Journal on Wireless Communications and Networking, 2010(1), 805216.

    Article  Google Scholar 

  25. Maric, I., Goldsmith, A., & Medard, M. (2010). Analog network coding in the high-SNR regime. In Proceedings of the 2010 IEEE workshop on wireless network coding (pp. 1–6). Boston, MA.

  26. Xiao, M., Kliewer, J., & Skoglund, M. (2012). Design of network codes for multiple-user multiple-relay wireless networks. IEEE Transactions on Communications, 60(12), 3755–3766.

    Article  Google Scholar 

  27. Tracey, H., Medard, M., Koetter, R., Karger, D., David, R. K., Effros, M., et al. (2006). A random linear network coding approach to multicast. IEEE Transactions on Information Theory, 52(10), 4413–4430.

    Article  MathSciNet  MATH  Google Scholar 

  28. Ansari, R. I., Hassan, S. A., & Chrysostomou, C. (Dec 2015). RANC: Relay-aided network-coded D2D network. In IEEE international conference on information, communications and signal processing (ICICS). Singapore.

  29. Zhang, Y., & Li, J. (2006). Wavelet-based vibration sensor data compression technique for civil infrastructure condition monitoring. Journal of Computing in Civil Engineering, 20(6), 390–399.

    Article  Google Scholar 

  30. Syed, S. S., & Hassan, S. A. (2014). On the use of space–time block codes for opportunistic large array network. In IEEE international wireless communications and mobile computing conference (IWCMC). Nicosia.

  31. Meyer, C. D. (2001). Matrix analysis and applied linear algebra. Philadelphia: SIAM.

    Google Scholar 

  32. Senta, E. (2006). Non-negative matrices and Markov Chains (2nd ed.). Berlin: Springer.

    Google Scholar 

  33. Afzal, A., & Hassan, S. A. (2013). A stochastic geometry approach for outage analysis of ad hoc SISO networks in Rayleigh fading. In IEEE global communication conference (Globecom) (pp. 336–341). Atlanta.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Ali Hassan.

Additional information

The authors gratefully acknowledge the National ICT R&D Fund for sponsoring this research work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M.A., Hassan, S.A. Analysis of Linear Network Coding in Cooperative Multi-hop Networks. Wireless Pers Commun 95, 4967–4981 (2017). https://doi.org/10.1007/s11277-017-4141-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4141-3

Keywords

Navigation