Skip to main content
Log in

Low Complexity Detection for Quadrature Spatial Modulation Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Quadrature spatial modulation (QSM), where the real and imaginary parts of the transmitted symbol are transmitted separately, was recently proposed to increase the spectral efficiency of spatial modulation. An optimum maximum likelihood (ML) detection was introduced in QSM systems, which leads to high complexity as the exhausting search of all possible transmit antennas. In this paper, a low complexity detection, called signal vector based minimum mean square error (SVMMSE), is proposed for QSM systems. In the proposed SVMMSE detection, we estimate the transmit antenna indices and the transmitted symbol by considering the active transmit antennas in two different scenarios. Simulation results show that the performance of our SVMMSE detection is very close to the ML detection and complexity analysis shows that the computational complexity of the proposed SVMMSE detection is significantly reduced compared with that of the ML detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mesleh, R., Haas, H., Ahn, C. W., & Yun, S. (2006). Spatial modulation—a new low complexity spectral efficiency enhancing technique. In Proceedings of Communications and Networking in China (pp. 1–5).

  2. Mesleh, R., Haas, H., Sinanovic, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.

    Article  Google Scholar 

  3. Jeganathan, J., Ghrayeb, A., Szczecinski, L., & Ceron, A. (2009). Space shift keying modulation for MIMO channels. IEEE Transactions on Wireless Communications, 8(7), 3692–3703.

    Article  Google Scholar 

  4. Younis, A., Serafimovski, N., Mesleh, R., & Haas, H. (2010). Generalised spatial modulation. In Signals, systems and computers (pp. 1498–1502).

  5. Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008) Generalized space shift keying modulation for MIMO channels. In Proceedings of IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 1–5).

  6. Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008). Spatial modulation: optimal detection and performance analysis. IEEE Communications Letters, 12(8), 545–547.

    Article  Google Scholar 

  7. Wang, J., Jia, S., & Song, J. (2012). Signal vector based detection scheme for spatial modulation. IEEE Communications Letters, 16(1), 19–21.

    Article  MathSciNet  Google Scholar 

  8. Jianping, Z. (2012). Signal vector based list detection for spatial modulation. IEEE Wireless Communications Letters, 1(4), 265–267.

    Article  Google Scholar 

  9. Zhang, W., & Yin, Q. (2014). Adaptive signal vector based detection for spatial modulation. IEEE Communications Letters, 18(11), 2059–2062.

    Article  Google Scholar 

  10. Tang, Q., Xiao, Y., Yang, P., Yu, Q., & Li, S. (2013). A new low-complexity near-ML detection algorithm for spatial modulation. IEEE Wireless Communications Letters, 2(1), 90–93.

    Article  Google Scholar 

  11. Jianhong, Z., Xiaobo, Y., & Zhe, L. (2014). Low-complexity detection method for spatial modulation based on M-algorithm. Electronics Letters, 50(21), 1552–1554.

    Article  Google Scholar 

  12. Rajashekar, R., Hari, K. V. S., & Hanzo, L. (2014). Reduced-complexity ML detection and capacity-optimized training for spatial modulation systems. IEEE Transactions on Communications, 62(1), 112–125.

    Article  Google Scholar 

  13. Hongzhi, M., & Minglu, J. (2014). A low-complexity ML detection algorithm for spatial modulation systems with MPSK constellation. IEEE Communications Letters, 18(8), 1375–1378.

    Article  Google Scholar 

  14. Jintao, W., Shuyun, J., & Jian, S. (2012). Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme. IEEE Transactions on Wireless Communications, 11(4), 1605–1615.

    Article  Google Scholar 

  15. Sugiura, S., Chao, X., Soon Xin, N., & Hanzo, L. (2012). Reduced-complexity iterative-detection-aided generalized space-time shift keying. IEEE Transactions on Vehicular Technology, 61(8), 3656–3664.

    Article  Google Scholar 

  16. Younis, A., Di Renzo, M., Mesleh, R., & Haas, H. (2011). Sphere decoding for spatial modulation. In Proceedings of 2011 IEEE international conference on communications (ICC) (pp. 1–6).

  17. Younis, A., Sinanovic, S., Di Renzo, M., Mesleh, R., & Haas, H. (2013). Generalised sphere decoding for spatial modulation. IEEE Transactions on Communications, 61(7), 2805–2815.

    Article  Google Scholar 

  18. Mesleh, R., Ikki, S., & Aggoune, H. M. (2015). Quadrature spatial modulation. IEEE Transactions on Vehicular Technology, 64(6), 2738–2742.

    Article  Google Scholar 

  19. Xiao, Y., Yang, Z., Dan, L., Yang, P., Yin, L., & Xiang, W. (2014). Low-complexity signal detection for generalized spatial modulation. IEEE Communications Letters, 18(3), 403–406.

    Article  Google Scholar 

  20. Younis, A., Thompson, W., Di Renzo, M., Wang, C.-X., Beach, M. A., Haas, H. & Grant, P. M. (2013). Performance of spatial modulation using measured real-world channels. In Proceedings of 78rd IEEE vehicular technology conference (VTC Fall) (pp. 1–5).

  21. Serafimovski, N., Younis, A., Mesleh, R., Chambers, P., Di Renzo, M., Wang, C.-X., et al. (2013). Practical implementation of spatial modulation. IEEE Transactions on Vehicular Technology, 62(9), 4511–4523.

    Article  Google Scholar 

  22. Wu, X., & Thompson, J. S. (2009). Accelerated sphere decoding for multipleinput multiple-output systems using an adaptive statistical threshold. IET Signal Processing, 3(6), 433–444.

    Article  MathSciNet  Google Scholar 

  23. Handte, T., Müller, A., & Speidel, J. (2009). BER analysis and optimization of generalized spatial modulation in correlated fading channels. In Proceedings of IEEE vehicular technology conference fall (pp. 1–5).

  24. Fan, R., Yu, Y., & Guan, Y. (2015). Generalization of orthogonal frequency division multiplexing with index modulation. IEEE Transactions on Wireless Communications, 14(10), 5350–5359.

    Article  Google Scholar 

  25. Zheng, B., Chen, F., Wen, M., Ji, F., Yu, H., & Liu, Y. (2015). Low-complexity ML detector and performance analysis for OFDM with inphase/quadrature index modulation. IEEE Communications Letters, 19(11), 1893–1896.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by MEST 2015R1A2A1A05000977, NRF, South Korea, Shanghai Rising-Star Program (15QA1400100), National Natural Science Foundation of China (61671143) and the Brain Korea 21 PLUS Project, National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqin Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Jiang, X., Yan, Y. et al. Low Complexity Detection for Quadrature Spatial Modulation Systems. Wireless Pers Commun 95, 4171–4183 (2017). https://doi.org/10.1007/s11277-017-4057-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4057-y

Keywords

Navigation