Skip to main content

Advertisement

Log in

Wireless Sensor Network Based Smart Grid Communications: Challenges, Protocol Optimizations, and Validation Platforms

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Smart grids, the next generation of electric grids, require the deployment of sophisticated monitoring and control systems to enhance their operational efficiency. Wireless sensor networks (WSNs) have been considered as a promising communication technology for the monitoring and control of smart grid operation. They bring significant advantages such as, rapid deployment, low cost and scalability. However, the deployment of WSNs in smart grids brought new challenges mainly due to the electric grid features. Consequently, traditional WSN communication protocols have been shown inadequate and several recent research efforts were dedicated for their optimization. This paper provides a comprehensive survey on related literature, discusses the still-open research issues, and identifies the most common validation platforms for experimenting WSN communications in smart grid. We believe this survey will pave the way for the research community to (i) understand important concepts related to WSN-based smart grid communications, (ii) identify gaps and make valuable contributions in this timely and exiting field and (iii) choose the convenient experimental platform for the validation of proposed solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. http://www.contiki-os.org/start.html.

References

  1. Al-Anbagi, I. S., Erol-Kantarci, M., & Mouftah, H. T. (2013). A delay mitigation scheme for WSN-based smart grid substation monitoring. In IWCMC (pp. 1470–1475).

  2. Al-Anbagi, I. S., Erol-Kantarci, M., & Mouftah, H. T. (2013). QoS-aware inter-cluster head scheduling in WSNs for high data rate smart grid applications. In IEEE global communications conference, GLOBECOM 2013, Atlanta, GA (pp. 2628–2634). Dec 9–13, 2013.

  3. Al-Anbagi, I. S., Erol-Kantarci, M., & Mouftah, H. T. (2014). Priority- and delay-aware medium access for wireless sensor networks in the smart grid. IEEE Systems Journal, 8(2), 608–618. doi:10.1109/JSYST.2013.2260939.

    Article  Google Scholar 

  4. Al-Anbagi, I. S., Erol-Kantarci, M., & Mouftah, H. T. (2015). Delay critical smart grid applications and adaptive QoS provisioning. IEEE Access, 3, 1367–1378. doi:10.1109/ACCESS.2015.2466077.

    Article  Google Scholar 

  5. Al-Anbagi, I. S., Erol-Kantarci, M., & Mouftah, H. T. (2016). A survey on cross-layer quality-of-service approaches in WSNs for delay and reliability-aware applications. IEEE Communications Surveys and Tutorials, 18(1), 525–552. doi:10.1109/COMST.2014.2363950.

    Article  Google Scholar 

  6. Al-Anbagi, I. S., Mouftah, H. T., & Erol-Kantarci, M. (2011) Design of a delay-sensitive WSN for generation monitoring in the smart grid. In CCECE (pp. 1370–1373).

  7. Ancillotti, E., Bruno, R., & Conti, M. (2013). The role of communication systems in smart grids: Architectures, technical solutions and research challenges. Computer Communications, 36(17–18), 1665–1697.

    Article  Google Scholar 

  8. Baccour, N., Koubaa, A., Mottola, L., Zamalloa, M. A. Z., Youssef, H., Boano, C. A., et al. (2012). Radio link quality estimation in wireless sensor networks: A survey. TOSN, 8(4), 34.

    Article  Google Scholar 

  9. Baccour, N., Koubaa, A., Noda, C., Fotouhi, H., Alves, M., Youssef, H., et al. (2013). Radio link quality estimation in low-power wireless networks., Springer briefs in electrical and computer engineering Berlin: Springer. doi:10.1007/978-3-319-00774-8.

    Book  Google Scholar 

  10. Bicen, A., Akan, O., & Gungor, V. (2012). Spectrum-aware and cognitive sensor networks for smart grid applications. IEEE Communications Magazine, 50(5), 158–165. doi:10.1109/MCOM.2012.6194397.

    Article  Google Scholar 

  11. Bilgin, B. E., & Çagri Güngör, V. (2012). Performance evaluations of zigbee in different smart grid environments. Computer Networks, 56(8), 2196–2205. doi:10.1016/j.comnet.2012.03.002.

    Article  Google Scholar 

  12. Bilgin, B. E., & Gungor, V. C. (2011). On the performance of multi-channel wireless sensor networks in smart grid environments. In ICCCN (pp. 1–6).

  13. Boulis, A. (2007). Castalia: Revealing pitfalls in designing distributed algorithms in WSN. In Proceedings of the 5th international conference on embedded networked sensor systems (pp. 407–408). ACM.

  14. Downard, I. T. (2004). Simulating sensor networks in NS-2. DTIC Document: Tech. rep.

  15. Dunkels, A., Gronvall, B., & Voigt, T. (2004). Contiki-a lightweight and flexible operating system for tiny networked sensors. In 29th annual IEEE international conference on local computer networks (pp. 455–462). IEEE.

  16. Erol-Kantarci, M., & Mouftah, H. T. (2011). Wireless multimedia sensor and actor networks for the next generation power grid. Ad Hoc Networks, 9(4), 542–551.

    Article  Google Scholar 

  17. Erol-Kantarci, M., & Mouftah, H. T. (2011). Wireless sensor networks for cost-efficient residential energy management in the smart grid. IEEE Transaction on Smart Grid, 2(2), 314–325.

    Article  Google Scholar 

  18. Erol-Kantarci, M., & Mouftah, H. T. (2013). Smart grid forensic science: Applications, challenges, and open issues. IEEE Communications Magazine, 51(1), 68–74.

    Article  Google Scholar 

  19. Erol-Kantarci, M., & Mouftah, H. T. (2015). Energy-efficient information and communication infrastructures in the smart grid: A survey on interactions and open issues. IEEE Communications Surveys and Tutorials, 17(1), 179–197. doi:10.1109/COMST.2014.2341600.

    Article  Google Scholar 

  20. Fadel, E. A., Gungor, V. C., Nassef, L., Akkari, N., Malik, M. G. A., Almasri, S., et al. (2015). A survey on wireless sensor networks for smart grid. Computer Communications, 71, 22–33. doi:10.1016/j.comcom.2015.09.006.

    Article  Google Scholar 

  21. Fan, Z., Kalogridis, G., Efthymiou, C., Sooriyabandara, M., Serizawa, M., & McGeehan, J. (2010). The new frontier of communications research: Smart grid and smart metering. In Proceedings of the 1st international conference on energy-efficient computing and networking, e-Energy ’10 (pp. 115–118). ACM: New York. doi:10.1145/1791314.1791331.

  22. Fan, Z., Kulkarni, P., Gormus, S., Efthymiou, C., Kalogridis, G., Sooriyabandara, M., et al. (2013). Smart grid communications: Overview of research challenges, solutions, and standardization activities. IEEE Communications Surveys and Tutorials, 15(1), 21–38.

    Article  Google Scholar 

  23. Fang, X., Misra, S., Xue, G., & Yang, D. (2012). Smart grid—the new and improved power grid: A survey. IEEE Communications Surveys and Tutorials, 14(4), 944–980.

    Article  Google Scholar 

  24. Fateh, B., Govindarasu, M., & Ajjarapu, V. (2013). Wireless network design for transmission line monitoring in smart grid. IEEE Transaction on Smart Grid, 4(2), 1076–1086.

    Article  Google Scholar 

  25. Gao, J., Xiao, Y., Liu, J., Liang, W., & Chen, C. L. P. (2012). A survey of communication/networking in smart grids. Future Generation Computer Systems, 28(2), 391–404.

    Article  Google Scholar 

  26. Grilo, A., Casaca, A., Pereira, P. R., Buttyán, L., Gonçalves, J., & Fortunato, C. (2012). A wireless sensor and actuator network for improving the electrical power grid dependability. In NGI (pp. 71–78).

  27. Guglielmo, D. D., Brienza, S., & Anastasi, G. (2016). IEEE 802.15.4e: A survey. Computer Communications, 88, 1–24. doi:10.1016/j.comcom.2016.05.004.

    Article  Google Scholar 

  28. Gungor, V., & Sahin, D. (2012). Cognitive radio networks for smart grid applications: A promising technology to overcome spectrum inefficiency. IEEE Vehicular Technology Magazine, 7(2), 41–46. doi:10.1109/MVT.2012.2190183.

    Article  Google Scholar 

  29. Gungor, V. C., & Korkmaz, M. K. (2012). Wireless link-quality estimation in smart grid environments. International Journal of Distributed Sensor Networks. doi:10.1155/2012/214068.

  30. Gungor, V. C., Lu, B., & Hancke, G. P. (2010). Opportunities and challenges of wireless sensor networks in smart grid. IEEE Transactions on Industrial Electronics, 57(10), 3557–3564.

    Article  Google Scholar 

  31. Gungor, V. C., Sahin, D., Kocak, T., Ergüt, S., Buccella, C., Cecati, C., et al. (2011). Smart grid technologies: Communication technologies and standards. IEEE Transaction on Industrial Informatics, 7(4), 529–539.

    Article  Google Scholar 

  32. Gungor, V. C., Sahin, D., Kocak, T., Ergüt, S., Buccella, C., Cecati, C., et al. (2013). A survey on smart grid potential applications and communication requirements. IEEE Transaction on Industrial Informatics, 9(1), 28–42.

    Article  Google Scholar 

  33. Henderson, T. R., Lacage, M., Riley, G. F., Dowell, C., & Kopena, J. (2008). Network simulations with the NS-3 simulator. SIGCOMM Demonstration, 15, 17.

    Google Scholar 

  34. Ho, Q., Gao, Y., Rajalingham, G., & Le-Ngoc, T. (2014). Wireless communications networks for the smart grid., Springer briefs in computer science Berlin: Springer. doi:10.1007/978-3-319-10347-1.

    Book  Google Scholar 

  35. IPW Group (2012). Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). Amendment 1: MAC sublayer. IEEE Standard for Local and metropolitan area networks IEEE Std 802.15. 4e-2012.

  36. Incel, O. D. (2011). A survey on multi-channel communication in wireless sensor networks. Computer Networks, 55(13), 3081–3099.

    Article  Google Scholar 

  37. Jaikaeo, C., & Shen, C. C. (2005). Qualnet tutorial. Retrieved Jan 6, 2000.

  38. Khan, R. H., & Khan, J. Y. (2013). A comprehensive review of the application characteristics and traffic requirements of a smart grid communications network. Computer Networks, 57(3), 825–845. doi:10.1016/j.comnet.2012.11.002.

    Article  Google Scholar 

  39. Levis, P., Lee, N., Welsh, M., & Culler, D. (2003). Tossim: Accurate and scalable simulation of entire tinyos applications. In Proceedings of the 1st international conference on embedded networked sensor systems, SenSys ’03 (pp. 126–137). ACM: New York. doi:10.1145/958491.958506.

  40. Liberatore, V., & Al-Hammouri, A. (2011). Smart grid communication and co-simulation. In Energytech, 2011 IEEE (pp. 1–5). doi:10.1109/EnergyTech.2011.5948542.

  41. Lin, H., Veda, S. S., Shukla, S. K., Mili, L., & Thorp, J. S. (2012). GECO: Global event-driven co-simulation framework for interconnected power system and communication network. IEEE Transaction on Smart Grid, 3(3), 1444–1456.

    Article  Google Scholar 

  42. Long, X., Dong, M., Xu, W., & Li, Y. W. (2012). Online monitoring of substation grounding grid conditions using touch and step voltage sensors. IEEE Transaction on Smart Grid, 3(2), 761–769.

    Article  Google Scholar 

  43. Ma, R., Chen, H. H., Huang, Y. R., & Meng, W. (2013). Smart grid communication: Its challenges and opportunities. IEEE Transactions on Smart Grid, 4(1), 36–46. doi:10.1109/TSG.2012.2225851.

    Article  Google Scholar 

  44. Mahmood, A., Javaid, N., & Razzaq, S. (2015). A review of wireless communications for smart grid. Renewable and Sustainable Energy Reviews, 41, 248–260.

    Article  Google Scholar 

  45. Majumder, R., Bag, G., & Kim, K. H. (2012). Power sharing and control in distributed generation with wireless sensor networks. IEEE Transaction on Smart Grid, 3(2), 618–634.

    Article  Google Scholar 

  46. Matta, N., Rahim-Amoud, R., Merghem-Boulahia, L., & Jrad, A. (2012). A wireless sensor network for substation monitoring and control in the smart grid. In GreenCom (pp. 203–209).

  47. Nasipuri, A., Cox, R., Conrad, J., der Zel, L. V., Rodriguez, B., & McKosky, R. (2010). Design considerations for a large-scale wireless sensor network for substation monitoring. In LCN (pp. 866–873).

  48. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., & Voigt, T. (2006). Cross-level sensor network simulation with cooja. In Proceedings 2006 31st IEEE conference on local computer networks (pp. 641–648). doi:10.1109/LCN.2006.322172.

  49. Palattella, M., Accettura, N., Vilajosana, X., Watteyne, T., Grieco, L., Boggia, G., et al. (2013). Standardized protocol stack for the internet of (important) things. IEEE Communications Surveys Tutorials, 15(3), 1389–1406. doi:10.1109/SURV.2012.111412.00158.

    Article  Google Scholar 

  50. Rajalingham, G., Gao, Y., Ho, Q., & Le-Ngoc, T. (2014). Quality of service differentiation for smart grid neighbor area networks through multiple RPL instances. In Q2SWinet’14, Proceedings of the 10th ACM symposium on QoS and security for wireless and mobile networks, montreal, QC, September 21–22, 2014 (pp. 17–24). doi:10.1145/2642687.2642695.

  51. Rekik, S., Baccour, N., Jmaiel, M., & Drira, K. (2015). Low-power link quality estimation in smart grid environments. In IWCMC 2015 wireless sensor symposium (IWCMC 2015 wireless sensor symposium). Dubrovnik, Croatia.

  52. Rekik, S., Baccour, N., Jmaiel, M., & Drira, K. (2016) Holistic link quality estimation-based routing metric for RPL networks in smart grids. In 27th annual IEEE international symposium on personal, indoor and mobile radio communications (PIMRC): Mobile and wireless networks (IEEE PIMRC2016 mobile and wireless).

  53. Sabbah, A. I., Mougy, A. H. E., & Ibnkahla, M. (2014). A survey of networking challenges and routing protocols in smart grids. IEEE Transaction on Industrial Informatics, 10(1), 210–221. doi:10.1109/TII.2013.2258930.

    Article  Google Scholar 

  54. Sahin, D., Gungor, V. C., Kocak, T., & Tuna, G. (2014). Quality-of-service differentiation in single-path and multi-path routing for wireless sensor network-based smart grid applications. Ad Hoc Networks, 22, 43–60.

    Article  Google Scholar 

  55. Shah, G., Gungor, V., & Akan, O. (2013). A cross-layer QoS-aware communication framework in cognitive radio sensor networks for smart grid applications. IEEE Transactions on Industrial Informatics, 9(3), 1477–1485. doi:10.1109/TII.2013.2242083.

    Article  Google Scholar 

  56. Shah, G. A., Gungor, V. C., & Akan, Ö.B. (2012). A cross-layer design for QoS support in cognitive radio sensor networks for smart grid applications. In ICC (pp. 1378–1382).

  57. Sobeih, A., Hou, J. C., Kung, L., Li, N., Zhang, H., Chen, W., et al. (2006). J-sim: A simulation and emulation environment for wireless sensor networks. IEEE Wireless Communication, 13(4), 104–119. doi:10.1109/MWC.2006.1678171.

    Article  Google Scholar 

  58. Sobeih, A., Viswanathan, M., Marinov, D., & Hou, J. C. (2007). J-sim: An integrated environment for simulation and model checking of network protocols. In IPDPS (pp. 1–6).

  59. Soua, R., & Minet, P. (2015). Multichannel assignment protocols in wireless sensor networks: A comprehensive survey. Pervasive and Mobile Computing, 16, 2–21. doi:10.1016/j.pmcj.2014.04.004.

    Article  Google Scholar 

  60. Sun, W., & Wang, J. (2014). Cross-layer QoS optimization of wireless sensor network for smart grid. International Journal of Distributed Sensor Networks. doi:10.1155/2014/327067.

  61. Temel, c, Gungor, Vc, & Koçak, T. (2014). Routing protocol design guidelines for smart grid environments. Computer Networks, 60, 160–170. doi:10.1016/j.bjp.2013.11.009.

    Article  Google Scholar 

  62. Varga, A., et al. (2001). The omnet++ discrete event simulation system. In Proceedings of the European simulation multiconference (ESM2001) (Vol. 9, p. 65). sn.

  63. Wang, W., Xu, Y., & Khanna, M. (2011). A survey on the communication architectures in smart grid. Computer Networks, 55(15), 3604–3629.

    Article  Google Scholar 

  64. Wu, Y. C., Cheung, L. F., Lui, K. S., & Pong, P. W. T. (2012). Efficient communication of sensors monitoring overhead transmission lines. IEEE Transaction on Smart Grid, 3(3), 1130–1136.

    Article  Google Scholar 

  65. Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2013). A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys and Tutorials, 15(1), 5–20.

    Article  Google Scholar 

  66. Yigit, M., Gungor, V. C., Fadel, E. A., Nassef, L., Akkari, N., & Akyildiz, I. F. (2016). Channel-aware routing and priority-aware multi-channel scheduling for WSN-based smart grid applications. Journal of Network and Computer Applications, 71, 50–58. doi:10.1016/j.jnca.2016.05.015.

    Article  Google Scholar 

  67. Yigit, M., Incel, Ö. D., & Çagri Güngör, V. (2014). On the interdependency between multi-channel scheduling and tree-based routing for WNSs in smart grid environments. Computer Networks, 65, 1–20.

    Article  Google Scholar 

  68. Yigit, M., Yoney, E., & Gungor, V. (2013). Performance of mac protocols for wireless sensor networks in harsh smart grid environment. In First International Black Sea conference on communications and networking (BlackSeaCom) (pp. 50–53). doi:10.1109/BlackSeaCom.2013.6623380.

  69. Zaker, N., Kantarci, B., Erol-Kantarci, M., & Mouftah, H. T. (2014). Smart grid monitoring with service differentiation via EPON and wireless sensor network convergence. Optical Switching and Networking, 14, 53–68. doi:10.1016/j.osn.2014.01.010.

    Article  Google Scholar 

  70. Zhu, K., Chenine, M., & Nordstrom, L. (2011). ICT architecture impact on wide area monitoring and control systems’ reliability. IEEE Transactions on Power Delivery, 26(4), 2801–2808. doi:10.1109/TPWRD.2011.2160879.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Rekik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekik, S., Baccour, N., Jmaiel, M. et al. Wireless Sensor Network Based Smart Grid Communications: Challenges, Protocol Optimizations, and Validation Platforms. Wireless Pers Commun 95, 4025–4047 (2017). https://doi.org/10.1007/s11277-017-4038-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4038-1

Keywords

Navigation