Skip to main content
Log in

The Propagation Characteristics of Radio Frequency Signals for Wireless Sensor Networks in Large-Scale Farmland

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

For configuring wireless sensor network and deploying nodes, the propagation characteristics of wireless channel at frequency of 433 MHz and 2.4 GHz are investigated. Through the analysis of the received signal strength indicator (RSSI) and packet loss rate (PLR), we find that the RSSI (PLR) decreases (increases) as the transceiver nodes distance increases. It is also found that the path loss decreases with the antenna height increasing, and the path loss at 2.4 GHz is more serious than that at 433 MHz. Through the regression analysis in Matlab, we find that the optimal fitting model is the parametric exponential decay (OFPED) model, and the second-best is the linear logarithmic model. For OFPED model, the values of R2 vary from 0.9347 to 0.9893, and the values of root mean square error (RMSE) range from 0.7469 to 2.243 at frequency of 433 MHz; while at frequency of 2.4 GHz, the values of R2 change from 0.9612 to 0.9857, and the values of RMSE range from 1.375 to 3.181. Moreover, we make a comparison analysis with several modified exponential decay (MED) models, and the validation results show that the MED models can be used as conservative upper and lower bounds of path loss, at least for wheat field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sørensen, C. G., & Bochtis, D. D. (2010). Conceptual model of fleet management in agriculture. Biosystems Engineering, 105(1), 41–50.

    Article  Google Scholar 

  2. Liu, H., Meng, Z., & Shang, Y. (2009). Sensor nodes placement for farmland environmental monitoring applications. In 2009 5th international conference on wireless communications, networking and mobile computing, pp. 1–4.

  3. Zhu, B., Han, W., Wang, Y., Wang, N., Chen, Y., & Guo, C. (2014). Development and evaluation of a wireless sensor network monitoring system in various agricultural environments. Journal of Microwave Power and Electromagnetic Energy, 48(3), 170–183.

    Article  Google Scholar 

  4. Akyildiz, I. F., Weilian, S., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  5. Ferentinos, K. P., Tsiligiridis, T. A., & Arvanitis, K. G. (2005). Energy optimization of wireless sensor networks for environmental measurements. In Proceedings of the international conference on computational intelligence for measurment systems and applicatons (CIMSA), pp. 250–255.

  6. Balachander, D., Rao, T. R., & Mahesh, G. (2013). RF propagation experiments in agricultural fields and gardens for wireless sensor communications. Progress In Electromagnetics Research C, 39, 103–108.

    Article  Google Scholar 

  7. Mahesh, G., Balachander, D., & Rao, T. R. (2013). RF propagation measurements in agricultural fields for wireless sensor communications. In 2013 international conference on circuits, power and computing technologies (ICCPCT). IEEE, pp. 808–812.

  8. Andrade-Sanchez, P., Pierce, F. J., & Elliott, T. V. (2007). Performance assessment of wireless sensor networks in agricultural settings. 2007 ASAE annual meeting, American Society of Agricultural and Biological Engineers.

  9. Wark, T., Corke, P., Sikka, P., Klingbeil, L., Guo, Y., Crossman, C., et al. (2007). Transforming agriculture through pervasive wireless sensor networks. IEEE Pervasive Computing, 6(2), 50–57.

    Article  Google Scholar 

  10. Harun, A., Shakaff, A. Y. M., Zakaria, A., Jaafar, M. N., Kamarudin, L. M., & Ndzi, D. L. (2011). Wireless sensor networks mapping and deployment in tropical precision farming. In 2011 third international conference on computational intelligence, modelling and simulation (CIMSiM). IEEE, pp. 346–350.

  11. Peng, Y. L., Li, P. P., Wang, J. Z., Hu, Y. G., & Lin, Y. F. (2013). Propagation characteristics of 2.4 GHz wireless channel at different directions and heights in tea plantation. Applied Mechanics and Materials, 325, 1697–1701.

    Article  Google Scholar 

  12. Meng, Y. S., & Lee, Y. H. (2010). Investigations of foliage effect on modern wireless communication systems: A review. Progress In Electromagnetics Research, 105, 313–332.

    Article  Google Scholar 

  13. Weissberger, M., Meidenbauer, R., Riggins, H., & Marcus, S. (1982). Radio wave propagation: A handbook of practical techniques for computing basic transmission loss and field strength, DTIC Document.

  14. Seybold, J. S. (2005). Introduction to RF propagation. Hoboken: Wiley.

    Book  Google Scholar 

  15. Committee, C. M. (1996). COST 235 radiowave propagation effects on nextgeneration fixed-services terrestrial telecommunications systems. ISBN.

  16. Andersen, J. B., Rappaport, T. S., & Yoshida, S. (1995). Propagation measurements and models for wireless communications channels. IEEE Communications Magazine, 33(1), 42–49.

    Article  Google Scholar 

  17. Martin, A., & Barber, F. R. (1971). Some measurements of loss of atmospheric sulphur dioxide near foliage. Atmospheric Environment, 5(5), 345–352.

    Article  Google Scholar 

  18. Meng, Y. S., Lee, Y. H., Ng, B. C., & Huang, S. Y. (2007). Wind and rain influences on forested radiowave propagation. Antennas and propagation society international symposium, 2007. IEEE, pp. 3748–3751.

  19. Zhou, L. L., Xi, X. L., Liu, J. F., & Yu, N. M. (2011). LF ground-wave propagation over irregular terrain. IEEE Transactions on Antennas and Propagation, 59(4), 1254–1260.

    Article  Google Scholar 

  20. Vougioukas, S., Anastassiu, H. T., Regen, C., & Zude, M. (2013). Influence of foliage on radio path losses (PLs) for wireless sensor network (WSN) planning in orchards. Biosystems Engineering, 114(4), 454–465.

    Article  Google Scholar 

  21. Li, S. Y., & Gao, H. J. (2011). Propagation characteristics of 2.4 GHz wireless channel in cornfields. In 2011 IEEE 13th international conference on communication technology (ICCT). IEEE, pp. 136–140.

  22. Rizman, Z. I., Jusoff, K., Rais, S. S., Bakar, H. H. H., Nair, G. K. S., & Ho, Y. K. (2011). Microwave signal propagation on oil palm tress: Measurements and analysis. International Journal on Smart Sensing and Intelligent Systems, 4(3), 388–401.

    Google Scholar 

  23. Hebel, M. A., Tate, R. F., & Watson, D. G. (2007). Results of wireless sensor network transceiver testing for agricultural applications. 2007 ASAE annual meeting, American Society of Agricultural and Biological Engineers.

  24. Ndzi, D. L., Harun, A., Ramli, F. M., Kamarudin, M. L., Zakaria, A., & Shakaff, A. Y. M. (2014). Wireless sensor network coverage measurement and planning in mixed crop farming. Computers and Electronics in Agriculture, 105, 83–94.

    Article  Google Scholar 

  25. Meng, Y. S., Lee, Y. H., & Ng, B. C. (2010). Path loss modeling for near-ground VHF radio-wave propagation through forests with tree-canopy reflection effect. Progress In Electromagnetics Research M, 12, 131–141.

    Article  Google Scholar 

  26. Sai, S., Niwa, E., Mase, K., Nishibori, M., Inoue, J., Obuchi, M., et al. (2009). Field evaluation of UHF radio propagation for an ITS safety system in an urban environment. IEEE Communications Magazine, 47(11), 120–127.

    Article  Google Scholar 

  27. Xu, J. Q., Liu, W., Lang, F. G., Zhang, Y. Y., & Wang, C. L. (2010). Distance measurement model based on RSSI in WSN. Wireless Sensor Network, 2(8), 606.

    Article  Google Scholar 

  28. Sorrentino, A., Nunziata, F., Ferrara, G., & Migliaccio, M. (2012). An effective indicator for NLOS, nLOS, LOS propagation channels conditions. In 2012 6th European conference on antennas and Propagation (EUCAP). IEEE, pp. 1422–1426.

  29. Weyn, M., Ergeerts, G., Wante, L., Vercauteren, C., & Hellinckx, P. (2013). Survey of the DASH7 alliance protocol for 433 MHz wireless sensor communication. International Journal of Distributed Sensor Networks, 9(12), 870430.

  30. Thelen, J., Goense, D., & Langendoen, K. (2005). Radio wave propagation in potato fields. 1st workshop on wireless network measurements, Vol. 2, pp. 331–338.

  31. Hagras, H., & Wagner, C. (2012). Towards the wide spread use of type-2 fuzzy logic systems in real world applications. IEEE Computational Intelligence Magazine, 7(3), 14–24.

    Article  Google Scholar 

  32. Snoussi, H., & Richard, C. (2006). Ensemble learning online filtering in wireless sensor networks. In 10th IEEE Singapore international conference on communication systems, 2006. ICCS 2006. IEEE, pp. 1–5.

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (61271257, 61471067, 61571051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huarui Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Zhang, L. & Miao, Y. The Propagation Characteristics of Radio Frequency Signals for Wireless Sensor Networks in Large-Scale Farmland. Wireless Pers Commun 95, 3653–3670 (2017). https://doi.org/10.1007/s11277-017-4018-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4018-5

Keywords

Navigation