A Trust-Based Framework for Increasing MAC Layer Reliability in Cognitive Radio VANETs


Vehicular Ad hoc Networks (VANETs) are introduced to improve the performance of Intelligent Transportation Systems (ITS). As safety is the most important purpose of VANETs, reliability is one of their main necessities. In the other hand, regarding the popularity of VANETs in the future of auto-technologies, the lack of bandwidth in peak traffic hours seems to be one of the most important challenges. For this purpose, utilizing Cognitive Radio (CR) technology in VANETs appears to be a proper candidate. Making the most of CR-VANETS capabilities involves cooperation between the vehicles which in turns necessitates a comprehensive trust management system among them. Considering the concept of reliability in CR-VANETs in this article, employment of trust as a mean of improving reliability is investigated. Classifying the node’s misbehaviors into three categories of selfish, malicious and incapable, a model for evaluating reliability is derived, based on which a trust based framework is presented to improve the reliability of VANET’s transmission media access. Simulation results show that considering cognitive radio and trust together can improve the reliability of VANET and can decrease the number of accidents in peak traffic hours.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Miles, J., McKenzie, F., & Harris, R. (2011). European Commission on Mobility and Transport, [Online]. Available: http://ec.europa.eu/transport/themes/its/studies/doc/2011_05-its-public-funding-guidelines.pdf\ndeployment.htm.

  2. 2.

    Basagni, S., Conti, M., Giordano, S., & Stojmenovic, I. (2013). Mobile Ad Hoc Networking: The Cutting Edge Directions (2nd ed., vol. 35). Wiley-IEEE Press, IEEE Series on Digital & Mobile Communication.

  3. 3.

    Koster, A., Tettamanzi, A., Bazzan, A. L. C., & Da Costa Pereira C. (2013) Using trust and possibilistic reasoning to deal with untrustworthy communication in VANETs. In IEEE conference on intelligent transportation systems, proceedings, ITSC, (pp. 2355–2360).

  4. 4.

    Hafeez, K. A., Zhao, L., Liao, Z., & Ma, B. N. W. (2012) Reliability of cluster-based multichannel MAC protocols in VANETs. In IEEE international conference on communications, (pp. 418–423).

  5. 5.

    Fawaz, K., Ghandour, A., Olleik, M., & Artail, H. (2010) Improving reliability of safety applications in vehicle ad hoc networks through the implementation of a cognitive network. In 2010 IEEE 17th international conference on Telecommunications (ICT), (pp. 798–805).

  6. 6.

    Xu, G., Wu, Q., Daneshmand, M., Liu, Y., & Wang, M. (2016). A data privacy protective mechanism for wireless body area networks. Wireless Communications and Mobile Computing, 16(13), 1746–1758.

    Article  Google Scholar 

  7. 7.

    Akyıldız, I. F., Lee, W.-Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810–836.

    Article  Google Scholar 

  8. 8.

    Fazio, P., De Rango, F., & Sottile, C. (2015). A predictive cross-layered interference management in a multichannel MAC with reactive routing in VANET. IEEE Transactions on Mobile Computing, 15(8), 1850–1862.

    Article  Google Scholar 

  9. 9.

    Ghandour, A. J., Fawaz, K., & Artail, H. (2011). Data delivery guarantees in congested Vehicular ad hoc networks using cognitive networks. In 2011 7th international wireless communications and mobile computing conference, (pp. 871–876).

  10. 10.

    Zhang, J., Chen, C., & Cohen, R. (2013). Trust modeling for message relay control and local action decision making in VANETs. Security and Communication Networks, 6(1), 1–14.

    Article  Google Scholar 

  11. 11.

    Monir, M., Abdel-Hamid, A., & El Aziz, M. A. (2013). “A Categorized Trust-Based Message Reporting Scheme for VANETs”, in Communications in Computer and Information Science (Vol. 381, pp. 65–83). CCIS: Springer.

    Google Scholar 

  12. 12.

    Li, X., Liu, J., Li, X., & Sun, W. (2013) RGTE: A reputation-based global trust establishment in VANETs. In Proceedings5th international conference on intelligent networking and collaborative systems, INCoS 2013, (pp. 210–214).

  13. 13.

    Kamesh, & Sakthi Priya, N. (2014). Security enhancement of authenticated RFID generation. International Journal of Applied Engineering Research, 9(22), 5968–5974.

    Google Scholar 

  14. 14.

    Willke, T. L., Tientrakool, P., & Maxemchuk, N. F. (2009). A survey of inter-vehicule communication protocols and their applications. IEEE Communications Surveys and Tutorials, 11(2), 3–20.

    Article  Google Scholar 

  15. 15.

    Manzano, M., Espinosa, F., Bravo, A. M., Garcia, D., Gardel, A., & Bravo, I. (2012). Medium access control based on a non cooperative cognitive radio for platooning communications. In IEEE intelligent vehicles symposium, proceedings, (pp. 408–413).

  16. 16.

    Akildiz, R. B. I. F., & Lo, B. F. (2011). Cooperative spectrum sensing in cognitive radio networks: a survey. Physical Communication, 4(1), 40–62.

    Article  Google Scholar 

  17. 17.

    Jayaweera, S. K., Vazquez-Vilar, G., & Mosquera, C. (2010). Spectrum sharing in cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(5), 2328–2339.

    Article  Google Scholar 

  18. 18.

    Stanica, R., Chaput, E., & Beylot, A.-L. (2012). Properties of the MAC layer in safety vehicular ad hoc networks. IEEE Communications Magazine, 50(5), 192–200.

    Article  Google Scholar 

  19. 19.

    Grover, J., Gaur, M. S., & Laxmi, V. (2013). Trust establishment techniques in VANET. In Wireless networks and security: Issues, Challenges and Research Trends, S. Khan and A.-S. (pp. 273–301). New York: Springer.

  20. 20.

    Biswas S., & Mišić, J. (2010). Establishing trust on VANET safety messages (Invited paper). In Lecture notes of the institute for computer sciences, social-informatics and telecommunications engineering, vol. 49 LNICST (pp. 314–327). Springer.

  21. 21.

    Shi, F., Baek, J., Song, J., & Liu, W. (2013). A novel scheme to prevent MAC layer misbehavior in IEEE 802.11 ad hoc networks. Telecommunication Systems, 52(4), 2397–2406.

    Article  Google Scholar 

  22. 22.

    Li, M., Salinas, S., Li, P., Sun, J., & Huang, X. (2015). MAC-layer selfish misbehavior in IEEE 802.11 ad hoc networks: Detection and defense. IEEE Transactions on Mobile Computing, 14(6), 1203–1217.

    Article  Google Scholar 

  23. 23.

    Azarfar, A., Frigon, J.-F., & Sanso, B. (2012). Improving the reliability of wireless networks using cognitive radios. IEEE Communications Surveys and Tutorials, 14(2), 338–354.

    Article  Google Scholar 

  24. 24.

    Ramachandran, K., Gruteser, M., Onishi, R., & Hikita, T. (2007). Experimental analysis of broadcast reliability in dense vehicular networks. IEEE Vehicular Technology Conference, 2(4), 2091–2095.

    Google Scholar 

  25. 25.

    Azarfar, A., Frigon, J. F., & Sansò, B. (2013). Reliability analysis of a channel restoration mechanism for opportunistic spectrum access. Computer Communications, 36(8), 947–961.

    Article  Google Scholar 

  26. 26.

    Shrestha, A., Xing, L., Sun, Y., & Vokkarane, V. M. (2012). Infrastructure communication reliability of wireless sensor networks considering common-cause failures. International Journal of Performability Engineering, 8(2), 141–150.

    Google Scholar 

  27. 27.

    Mak, T., Laberteaux, K., & Sengupta, R. (2005). A multi-channel VANET providing concurrent safety and commercial services. In Proceedings of the 2nd ACM international workshop on Vehicular ad hoc networks, (pp. 1–9).

  28. 28.

    Huang, Z., Ruj, S., Cavenaghi, M., & Nayak, A. (2011). Limitations of trust management schemes in VANET and countermeasures. In IEEE international symposium on personal, indoor and mobile radio communications, PIMRC, (pp. 1228–1232).

  29. 29.

    Prado, A., Ruj, S., & Nayak, A. (2013). Enhanced privacy and reliability for secure geocasting in VANET. In IEEE international conference on communications, (pp. 1599–1603).

  30. 30.

    Bicen, A. O., & Akan, O. B. (2011). Reliability and congestion control in cognitive radio sensor networks. Ad Hoc Networks, 9(7), 1154–1164.

    Article  Google Scholar 

  31. 31.

    Bastani, S., Act, C., & Act, T. C. (2013). Reliability and Efficiency of Vehicular Network Applications. Jour: University of Sydney.

    Google Scholar 

  32. 32.

    Li, H., & Irick, D. K. (2010). Collaborative spectrum sensing in cognitive radio vehicular ad hoc networks: Belief propagation on highway. In IEEE vehicular technology conference, (pp. 1–5).

  33. 33.

    Liang, Y. C., Chen, K. C., Li, G. Y., & Mähönen, P. (2011). Cognitive radio networking and communications: An overview. IEEE Transactions on Vehicular Technology, 60(7), 3386–3407.

    Article  Google Scholar 

  34. 34.

    Wen, H., Lin, C., Ren, F. Y., Zhou, J., Yue, Y., & Huang, X. M. (2012). Retransmission or redundancy: Transmission reliability study in wireless sensor networks. Science China Information Sciences, 55(4), 737–746.

    MathSciNet  Article  Google Scholar 

  35. 35.

    Bai, F., & Krishnan, H. (2006). Reliability analysis of DSRC wireless communication for vehicle safety applications. In Intelligent transportation systems conference ITSC’06 IEEE 2006, (pp. 355–362).

  36. 36.

    Yao, Y., Rao, L., Liu, X., Member, S. & Vv, A. V. (2013). Performance and reliability analysis of IEEE 802.11 p safety communication in a highway environment, 62(9), 4198–4212.

  37. 37.

    Sahoo, J., Wu, E. H. K., Sahu, P. K., & Gerla, M. (2011). Binary-partition-assisted MAC-layer broadcast for emergency message dissemination in VANETs. IEEE Transactions on Intelligent Transportation Systems, 12(3), 757–770.

    Article  Google Scholar 

  38. 38.

    Guo, W. J., Huang, L. S., Sun, Q., Xu, H. L., & Zhang, H. R. (2014). Delay-aware reliable broadcast scheme based on power control for VANETs. The Journal of China Universities of Posts and Telecommunications, 21(1), 26–35.

    Article  Google Scholar 

  39. 39.

    Tilak, S., Ghazaleh, N. A., & Heinzelman, W. (2002). A Taxonomy of wireless micro-sensor network models. Mobile Computing and Communications Review, 6(2), 28–36.

    Article  Google Scholar 

  40. 40.

    Cho, J. H., Swami, A., & Chen, I. R. (2011). A survey on trust management for mobile ad hoc networks. IEEE Communications Surveys and Tutorials, 13(4), 562–583.

    Article  Google Scholar 

  41. 41.

    Wex, P., Breuer, J., Held, A., Leinmuller, T., & Delgrossi, L. (2008). Trust issues for vehicular ad hoc networks. In VTC spring 2008 IEEE vehicular technology conference, (pp. 2800–2804).

  42. 42.

    Zhou, A., Li, J., Sun, Q., Fan, C., Lei, T., & Yang, F. (2015). A security authentication method based on trust evaluation in VANETs. EURASIP Journal on Wireless Communications and Networking, 2015(1), 59.

    Article  Google Scholar 

  43. 43.

    Baiad, R., Alhussein, O., Otrok, H., & Muhaidat, S. (2016). Novel cross layer detection schemes to detect blackhole attack against QoS-OLSR protocol in VANET. Vehicular Communications, 5, 9–17.  

    Article  Google Scholar 

  44. 44.

    Fawaz, K., Ghandour, A., Olleik, M., & Artail, H. (2010). Improving reliability of safety applications in vehicle ad hoc networks through the implementation of a cognitive network. In ICT 2010: 2010 17th international conference on telecommunications, (pp. 798–805).

  45. 45.

    Silva, C., Nogueira, M., Kim, D., Cerqueira, E., & Santos, A. (2016). Cognitive radio based connectivity management for resilient end-to-end communications in VANETs. Computer Communications, 79, 1–8.

    Article  Google Scholar 

  46. 46.

    Liu, X., Zeng, Z., Guo, C., & Zhu, S. (2016). Performance analysis of spatial-temporal spectrum sensing for cognitive vehicular network. In Proceedings of the 3rd ACM workshop on mobile sensing, computing and communication (pp. 1–6).

  47. 47.

    Palazzi, C. E., Roccetti, M., & Ferretti, S. (2010). An intervehicular communication architecture for safety and entertainment. IEEE Transactions on Intelligent Transportation Systems, 11(1), 90–99.

    Article  Google Scholar 

  48. 48.

    Palazzi, C. E., Ferretti, S., Roccetti, M., Pau, G., & Gerla, M. (2007). How do you quickly choreograph inter-vehicular communications? A fast vehicle-to-vehicle multi-hop broadcast algorithm, explained. In 2007 4th annual IEEE consumer communications and networking conference CCNC 2007 (pp. 960–964).

  49. 49.

    Fasolo, E., Zanella, A., & Zorzi, M. (2006). An effective broadcast scheme for alert message propagation in vehicular ad hoc networks. In 2006 IEEE international conference on communications, vol. 9, (pp. 3960–3965).

  50. 50.

    Yao-Tsung, Y., & Li-Der, C. (2008). Position-based adaptive broadcast for inter-vehicle communications [C]. In Proceedings of IEEE international conference on communications workshops (ICC 2008). Beijing, China, (pp. 410–414).

  51. 51.

    Mariyasagayam, M. N., Osafune, T., & Lenardi, M. (2007). Enhanced multi-hop vehicular broadcast (MHVB) for active safety applications. In 2007 7th international conference on ITS telecommunications, (pp. 1–6).

  52. 52.

    Zhang, X., Su, H., & Chen, H.-H. (2006). Cluster-based multi-channel communications protocols in vehicle ad hoc networks. IEEE Wireless Communications, 13(5), 44–51.

    Article  Google Scholar 

  53. 53.

    Ben Jaballah, W., Conti, M., Mosbah, M., & Palazzi, C. E. (2014). Fast and secure multihop broadcast solutions for intervehicular communication. IEEE Transactions on Intelligent Transportation Systems, 15(1), 433–450.

    Article  Google Scholar 

  54. 54.

    García-Costa, C., Egea-López, E., & García-Haro, J. (2016). Evaluation of MAC contention techniques for efficient geo-routing in vehicular networks. Ad Hoc Networks, 37, 44–62.

    Article  Google Scholar 

  55. 55.

    Cognitive Radio Cognitive Network Simulator (2013). [Online]. Available: http://faculty.uml.edu/TriciaChigan/Research/CRCNSimulator.htm\.

  56. 56.

    Tomar R. S., & Verma, S. (2010). RSU centric channel allocation in vehicular ad-hoc networks. In Proceedings of 6th international conference on wireless communication and sensor networks, WCSN-2010, (pp. 1–6).

  57. 57.

    Su, H., Zhang, X., & Chen, H. H. (2006). Cluster-based DSRC architecture for QoS provisioning over vehicle ad hoc networks. In GLOBECOMIEEE global telecommunications conference, (pp. 1–5).

  58. 58.

    Xu, Q., Mak, T., Ko, J., & Sengupta, R. (2004). Vehicle-to-vehicle safety messaging in DSRC. In Proceedings of the first ACM workshop on vehicular ad hoc networksVANET’04, (pp. 19–28).

Download references

Author information



Corresponding author

Correspondence to Naser Movahhedinia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goli-Bidgoli, S., Movahhedinia, N. A Trust-Based Framework for Increasing MAC Layer Reliability in Cognitive Radio VANETs. Wireless Pers Commun 95, 2873–2893 (2017). https://doi.org/10.1007/s11277-017-3968-y

Download citation


  • Vehicular Ad-Hoc Networks
  • Cognitive Radio VANETs
  • Reliability
  • Trust Management System