Wireless Personal Communications

, Volume 92, Issue 1, pp 127–148 | Cite as

The IoT Architectural Framework, Design Issues and Application Domains

  • Gordana GardaševićEmail author
  • Mladen Veletić
  • Nebojša Maletić
  • Dragan Vasiljević
  • Igor Radusinović
  • Slavica Tomović
  • Milutin Radonjić


The challenge raised by the introduction of Internet of Things (IoT) concept will permanently shape the networking and communications landscape and will therefore have a significant social impact. The ongoing IoT research activities are directed towards the definition and design of open architectures and standards, but there are still many issues requiring a global consensus before the final deployment. The paper presents and discusses the IoT architectural frameworks proposed under the ongoing standardization efforts, design issues in terms of IoT hardware and software components, as well as the IoT application domain representatives, such as smart cities, healthcare, agriculture, and nano-scale applications (addressed within the concept of Internet of Nano-Things). In order to obtain the performances related to recently proposed protocols for emerging Industrial Internet of Things applications, the preliminary results for Message Queuing Telemetry Transport and Time-Slotted Channel Hopping protocols are provided. The testing was performed on OpenMote hardware platform and two IoT operating systems: Contiki and OpenWSN.


Internet of Things (IoT) Architectural framework Applications Industrial IoT MQTT TSCH OpenMote platform 



This work is partially supported by the Ministry of Education and Science of Bosnia and Herzegovina and the Ministry of Science of Montenegro, under the bilateral Project Architecture, design and performances of DCQ switch, and by the Ministry of Science of Montenegro under Grant 01-451/2012 (FOREMONT). The research is also partially supported by NORBOTECH (NORway-BOsnia TECHnology Transfer) project under reference 2011/1370, within the Programme in Higher Education, Research and Development; financed by the Norwegian Ministry of Foreign Affairs.


  1. 1.
    Botterman, M. (2009). Internet of Things: An early reality of the Future Internet. Workshop Report, European Commission Information Society and Media, May 2009.Google Scholar
  2. 2.
    Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.CrossRefzbMATHGoogle Scholar
  3. 3.
    Stankovic, J. A. (2014). Research directions for the Internet of Things. IEEE Internet of Things Journal, 1(1), 3–9.CrossRefGoogle Scholar
  4. 4.
    ITU-T. Internet of things global standards initiative.
  5. 5.
    IETF. (2010). The internet of things—Concept and problem statement.
  6. 6.
    IEEE Interent of Things, Towards a Definition of the Internet of Things (IoT), Revision 1, May 27 (2015).Google Scholar
  7. 7.
    Vasseur, J. (2011). Terminology in low power and lossy networks. IETF Internet Draft, September 2011.Google Scholar
  8. 8.
    Vermesan, O., & Friess, P. (2013). Internet of things: Converging technologies for smart environments and integrated ecosystems. The River Publishers Series in Communications, June 2013.Google Scholar
  9. 9.
  10. 10.
    IETF 6LoWPAN Working Group.
  11. 11.
  12. 12.
    Winter, T. et al. (2012). RPL: IPv6 routing protocol for low-power and lossy networks. In RFC 6550 (Proposed Standard), Internet Engineering Task Force, March 2012.Google Scholar
  13. 13.
    IETF, The Constrained Application Protocol (CoAP), in RFC 7252 (Proposed Standard), June 2014.
  14. 14.
  15. 15.
  16. 16.
    IETF, Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement.
  17. 17.
    Buratti, C., Stajkic, A., Gardasevic, G., Milardo, S., Abrignani, M. D., Mijovic, S., et al. (2016). Testing protocols for the internet of things on the EuWIn platform. IEEE Internet of Things Journal, 3(1), 124–133.CrossRefGoogle Scholar
  18. 18.
    Texas Instruments, CC2538 Powerful Wireless Microcontroller System-On-Chip for 2.4-GHz IEEE 802.15.4, 6LoWPAN, and ZigBee Applications.
  19. 19.
  20. 20.
  21. 21.
  22. 22.
    Raspberry Pi platform.
  23. 23.
    Arduino platform.
  24. 24.
    Intel Galileo platform.
  25. 25.
    BeagleBone platform.
  26. 26.
    TinyOS Operating System.
  27. 27.
    Contiki Operating System.
  28. 28.
    FreeRTOS Operating System.
  29. 29.
    RIOT Operating System.
  30. 30.
    Watteyne, T., Vilajosana, X., Kerkez, B., Chraim, F., Weekly, K., Wang, Q., et al. (2012). OpenWSN: A standards-based low-power wireless development environment. Transactions on Emerging Telecommunications Technologies, 23, 480–493. doi: 10.1002/ett.2558.CrossRefGoogle Scholar
  31. 31.
    Sensinode NanoStack 2.0.
  32. 32.
    Thingsquare platform.
  33. 33.
  34. 34.
    Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nilsson, M., & Oliveira, A. (2011). Smart cities and the future internet: Towards cooperation frameworks for open innovation. The Future Internet. Lecturer Notes in Computer Science, 6656, 431–446.Google Scholar
  35. 35.
    Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32. doi: 10.1109/JIOT.2014.2306328.CrossRefGoogle Scholar
  36. 36.
    Aug-Blum, I., Boussetta, K. Rivano, H. Stanica, R., & Valois, F. (2012). Capillary networks: A novel networking paradigm for urban environments. In Proceedings of the first workshop on Urban networking (UrbaNe ’12), ACM, New York, NY, USA, 25-30. doi: 10.1145/2413236.2413243.
  37. 37.
    Open Cities, EU FP7 project.
  38. 38.
    VITAL, EU FP7 project.
  39. 39.
    RERUM, EU FP7 project.
  40. 40.
    CityPulse, EU FP7 project.
  41. 41.
    Smart Santander, EU FP7 project. Future internet research and experimentation.
  42. 42.
    ITU-T Study Group 5. Environment and climate change.
  43. 43.
    IEEE 2030 Smart Grid Interoperability Working Group.
  44. 44.
    Riazul Islam, S. M., Daehan, K., Humaun, K., Hossain, M., & Kyung-Sup, K. (2015). The internet of things for health care: A comprehensive survey. IEEE Access, 3, 678–708. doi: 10.1109/ACCESS.2015.2437951.CrossRefGoogle Scholar
  45. 45.
    Fang, H., Dan, X., & Shaowu, S. (2013). On the Application of the internet of things in the field of medical and health care. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing, (pp. 2053–2058), 20-23 Aug. 2013. doi: 10.1109/GreenCom-iThings-CPSCom.2013.384.
  46. 46.
    Ugrenovic, D., & Gardasevic, G. (2015). Performance analysis of IoT wireless sensor networks for healthcare applications. In The 2nd International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2015, Silver Lake, Serbia, June 8–11, 2015.Google Scholar
  47. 47.
    ITU-T Focus Group on Smart Sustainable Cities, An overview of smart sustainable cities and the role of information and communication technologies.
  48. 48.
    OpenIoT, EU FP7 project.
  49. 49.
  50. 50.
    Akyildiz, I. F., & Jornet, J. M. (2010). The internet of nano things. IEEE Wireless Communications, 17(6), 58–63.CrossRefGoogle Scholar
  51. 51.
    Tseng, A., Chen, K., Chen, C., & Ma, K. (2003). Electron beam lithography in nanoscale fabrication: Recent development. IEEE Transactions on Electronics Packaging Manufacturing, 26(2), 141–149.CrossRefGoogle Scholar
  52. 52.
    Lee, H. H., Menard, E., Tassi, J. A. R. N. G., & Blanchet, G. B. (2005). Large area microcontact printing presses for plastic electronics. Materials Research Society Bulletin, 846, 731–736.Google Scholar
  53. 53.
    Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191.CrossRefGoogle Scholar
  54. 54.
    Geim, A. K. (2009). Graphene: Status and prospects. Science, 324(5934), 1530–1534.CrossRefGoogle Scholar
  55. 55.
    Balasubramaniam, S., & Kangasharju, J. (2013). Realizing the internet of nano things: Challenges, solutions, and applications. Computer, 46(2), 62–68.CrossRefGoogle Scholar
  56. 56.
    Akyildiz, I. F., Brunetti, F., & Blazquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks, 52, 2260–2279.CrossRefGoogle Scholar
  57. 57.
    Nakano, T., Eckford, A., & Haraguchi, T. (2013). Molecular communication. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  58. 58.
    Atakan, B. (2014). Molecular communication and nanonetworks: From nature to practical systems. Berlin: Springer.CrossRefGoogle Scholar
  59. 59.
    Pierobon, M., & Akyildiz, I. F. (2013). Fundamentals of diffusion-based molecular communication in nanonetworks. Founds and Trends in Networking, 8(1–2), 1–147.zbMATHGoogle Scholar
  60. 60.
    Jornet, J. M., & Akyildiz, I. F. (2014). Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks. IEEE Transactions on Communications, 62(5), 1742–1754.CrossRefGoogle Scholar
  61. 61.
    Akyildiz, I. F., Pierobon, M., Balasubramaniam, S., & Koucheryavy, Y. (2015). Internet of bio-nanothings. IEEE Communications Magazine, 53(3), 32–40.CrossRefGoogle Scholar
  62. 62.
    Nakano, T. et al. (2008). Microplatform for intercellular communication. In 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems Google Scholar
  63. 63.
    Mesiti, F., & Balasingham, I. (2012). Nanomachine-to-neuron communication interfaces for neuronal stimulation at nanoscale. IEEE Journal on Selected Areas in Communications, 31(12), 695–704.CrossRefGoogle Scholar
  64. 64.
    Jornet, J. M., & Akyildiz, I. F. (2012). The internet of multimedia nano-things. Nano Communication Networks, 3, 242–251.CrossRefGoogle Scholar
  65. 65.
    Vilajosana, X., Tuset, P., Watteyne, T., & Pister, K. (2015). OpenMote: Open-source prototyping platform for the industrial IoT. In International Conference on Ad Hoc Networks (AdHocNets), Sep 2015, San Remo, Italy (pp. 211–222).Google Scholar
  66. 66.
    OpenMote platform.
  67. 67.
  68. 68.
    OpenWSN project.
  69. 69.
    Capossele, A., Cervo, V., De Cicco, G., & Petrioli, C. (2015). Security as a CoAP resource: An optimized DTLS implementation for the IoT. In 2015 IEEE international conference on communications (ICC), London (pp. 549–554). doi: 10.1109/ICC.2015.7248379.
  70. 70.
    Lesjak, C., et al. (2015). Securing smart maintenance services: Hardware-security and TLS for MQTT. In 2015 IEEE 13th international conference on industrial informatics (INDIN), Cambridge (pp. 1243–1250). doi: 10.1109/INDIN.2015.7281913.
  71. 71.
    Mosquitto project.
  72. 72.
    Hwang, H. C., Park, J., Shon, J. G. (2016). Design and implementation of a reliable message transmission system based on MQTT protocol in IoT. Wireless Personal Communications, 1–13. doi: 10.1007/s11277-016-3398-2.
  73. 73.
    MQTT for Sensor Networks (MQTT-SN) Protocol Specifications (Ver. 1.2).

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Gordana Gardašević
    • 1
    Email author
  • Mladen Veletić
    • 1
  • Nebojša Maletić
    • 2
  • Dragan Vasiljević
    • 1
  • Igor Radusinović
    • 3
  • Slavica Tomović
    • 3
  • Milutin Radonjić
    • 3
  1. 1.Faculty of Electrical EngineeringUniversity of Banja LukaBanja LukaBosnia and Herzegovina
  2. 2.IHPFrankfurt (Oder)Germany
  3. 3.Faculty of Electrical EngineeringUniversity of MontenegroPodgoricaMontenegro

Personalised recommendations