Wireless Personal Communications

, Volume 94, Issue 4, pp 3303–3325 | Cite as

Compressed Sensing of Sparse Multipath MIMO Channels with Superimposed Training Sequence

  • Bilal Amin
  • Babar Mansoor
  • Syed Junaid Nawaz
  • Shree K. Sharma
  • Mohmammad N. Patwary
Article

Abstract

Recent advances in multiple-input multiple-output (MIMO) systems have renewed the interests of researchers to further explore this area for addressing various dynamic challenges of emerging radio communication networks. Various measurement campaigns reported recently in the literature show that physical multipath MIMO channels exhibit sparse impulse response structure in various outdoor radio propagation environments. Therefore, a comprehensive physical description of sparse multipath MIMO channels is presented in first part of this paper. Superimposing a training sequence (low power, periodic) over the information sequence offers an improvement in the spectral efficiency by avoiding the use of dedicated time/frequency slots for the training sequence, which is unlike the traditional schemes. The main contribution of this paper includes three superimposed training (SiT) sequence based channel estimation techniques for sparse multipath MIMO channels. The proposed techniques exploit the compressed sensing theory and prior available knowledge of channel’s sparsity. The proposed sparse MIMO channel estimation techniques are named as, SiT based compressed channel sensing (SiT-CCS), SiT based hardlimit thresholding with CCS (SiT-ThCCS), and SiT training based match pursuit (SiT-MP). Bit error rate (BER) and normalized channel mean square error are used as metrics for the simulation analysis to gauge the performance of proposed techniques. A comparison of the proposed schemes with a notable first order statistics based SiT least squares (SiT-LS) estimation technique is presented to establish the improvements achieved by the proposed schemes. For sparse multipath time-invariant MIMO communication channels, it is observed that SiT-CCS, SiT-MP, and SiT-ThCCS can provide an improvement up to 2, 3.5, and 5.2 dB in the MSE at signal to noise ratio (SNR) of 12 dB when compared to SiT-LS, respectively. Moreover, for \(\mathrm {BER}=10^{-1.9}\), the proposed SiT-CCS, SiT-MP, and SiT-ThCCS, compared to SiT-LS, can offer a gain of about 1, 2.5, and 3.5 dB in the SNR, respectively. The performance gain in MSE and BER is observed to improve with an increase in the channel sparsity.

Keywords

MIMO Superimposed training First-order statistics Compressed sensing Channel estimation 

References

  1. 1.
    Mansoor, B., Nawaz, S.J., Amin, B., Sharma, S. K., & Patwary, M. N. (2016). Superimposed training based estimation of sparse mimo channels for emerging wireless networks. In Proceedings of international conference on telecommunications (pp. 1–6).Google Scholar
  2. 2.
    Cotter, S. F., & Rao, B. D. (2002). Sparse channel estimation via matching pursuit with application to equalization. IEEE Transactions on Communications, 50(3), 374–377.CrossRefGoogle Scholar
  3. 3.
    Ariyavisitakul, S., Sollenberger, N. R., & Greenstein, L. J. (1997). Tap-selectable decision-feedback equalization. IEEE Transactions on Communications, 45(12), 1497–1500.CrossRefGoogle Scholar
  4. 4.
    Nawaz, S. J., Ahmed, K. I., Patwary, M. N., & Khan, N. M. (2012). Superimposed training-based compressed sensing of sparse multipath channels. IET Communications, 6(18), 3150–3156.CrossRefGoogle Scholar
  5. 5.
    Ying, J., Zhong, J., Zhao, M., & Cai, Y. (2013). Turbo equalization based on compressive sensing channel estimation in wideband HF systems. In Proceedings of the international conference on wireless communications signal processing (pp. 1–5).Google Scholar
  6. 6.
    Kocic, M., Brady, D., & Stojanovic, M. (1995). Sparse equalization for real-time digital underwater acoustic communications. In Proceedings of the OCEANS conference.Google Scholar
  7. 7.
    Schreiber, W. (1995). Advanced television systems for terrestrial broadcasting: Some problems and some proposed solutions. Proceedings of the IEEE, 83(6), 958–981.CrossRefGoogle Scholar
  8. 8.
    Fevrier, I. J., Gelfand, S. B., & Fitz, M. P. (1999). Reduced complexity decision feedback equalization for multipath channels with large delay spreads. IEEE Transactions on Communications, 47(6), 927–937.CrossRefGoogle Scholar
  9. 9.
    Zhao, J., Meng, W., & Jia, S. (2009). Sparse underwater acoustic OFDM channel estimation based on superimposed training. Journal of Marine Science and Application, 8(1), 65–70.CrossRefGoogle Scholar
  10. 10.
    Gui, G., Mehbodniya, A., & Adachi, F. (2013). Adaptive sparse channel estimation for time-variant MIMO communication systems. In Proceedings of the IEEE vehicular technology conference (pp. 1–5). New York: IEEE.Google Scholar
  11. 11.
    Cotter, S. F., & Rao, B. D. (2002). Sparse channel estimation via matching pursuit with application to equalization. IEEE Transactions on Communications, 50(3), 374–377.CrossRefGoogle Scholar
  12. 12.
    Wang, N., Gui, G., Zhang, Z., Tang, T., & Jiang, J. (2011). A novel sparse channel estimation method for multipath MIMO–OFDM systems. In Proceedings of the IEEE vehicular technology conference (pp. 1–5). New York: IEEE.Google Scholar
  13. 13.
    Karabulut, G. Z., & Yongacoglu, A. (2004). Sparse channel estimation using orthogonal matching pursuit algorithm. In Proceedings of the IEEE vehicular technology conference (Vol. 6, pp. 3880–3884). New York: IEEE.Google Scholar
  14. 14.
    Haupt, J., Bajwa, W. U., Raz, G., & Nowak, R. (2010). Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Transactions on Information Theory, 56(11), 5862–5875.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gui, G., Wan, Q., Peng, W., & Adachi, F. (2010). Sparse multipath channel estimation using compressive sampling matching pursuit algorithm. arXiv:1005.2270.
  16. 16.
    Han, D., Kim, S., & Principe, J. C. (2005). Sparse channel estimation with regularization method using convolution inequality for entropy. In Proceeding of the IEEE international joint conference on neural networks (Vol. 4, pp. 2359–2362). New York: IEEE.Google Scholar
  17. 17.
    Mazzenga, F. (2000). Channel estimation and equalization for M-QAM transmission with a hidden pilot sequence. IEEE Transactions on Broadcasting, 46(2), 170–176.CrossRefGoogle Scholar
  18. 18.
    He, S., Tugnait, J. K., & Meng, X. (2007). On superimposed training for MIMO channel estimation and symbol detection. IEEE Transactions on Signal Processing, 55(6), 3007–3021.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Farhang-Boroujeny, B. (1995). Pilot-based channel identification: Proposal for semi-blind identification of communication channels. IET Electronics Letters, 31(13), 1044–1046.CrossRefGoogle Scholar
  20. 20.
    Tugnait, J. K., & Luo, W. (2003). On channel estimation using superimposed training and first-order statistics. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing (Vol. 4, pp. IV-624). New York: IEEE.Google Scholar
  21. 21.
    Nawaz, S. J., Tiwana, M. I., Patwary, M. N., Khan, N. M., Tiwana, M. I., & Haseeb, A. (in press). GA based sensing of sparse multipath channels with superimposed training sequence.Google Scholar
  22. 22.
    Jungnickel, V., Manolakis, K., Zirwas, W., Panzner, B., Braun, V., Lossow, M., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–51.CrossRefGoogle Scholar
  23. 23.
    Ming, Lu, Lo, Titus, & Litva., (1997). A physical spatio-temporal model of multipath propagation channels. In Proceedings of the IEEE vehicular technology conference (Vol. 2, pp. 810–814).Google Scholar
  24. 24.
    Nawaz, S. J., Qureshi, B. H., & Khan, N. M. (2010). A generalized 3-D scattering model for a macrocell environment with a directional antenna at the BS. IEEE Transactions on Vehicular Technology, 59(7), 3193–3204.CrossRefGoogle Scholar
  25. 25.
    Janaswamy, R. (2002). Angle and time of arrival statistics for the gaussian scatter density model. IEEE Transactions on Wireless Communications, 1(3), 488–497.CrossRefGoogle Scholar
  26. 26.
    Le, K. N. (2009). On angle-of-arrival and time-of-arrival statistics of geometric scattering channels. IEEE Transactions on Vehicular Technology, 58(8), 4257–4264.CrossRefGoogle Scholar
  27. 27.
    Khan, N. M. (2006). Modeling and characterization of multipath fading channels in cellular mobile communication systems. Ph.D., Faculty of Engineering, University of New South Wales.Google Scholar
  28. 28.
    Barbotin, Y., Hormati, A., Rangan, S., & Vetterli, M. (2011). Estimating sparse MIMO channels having common support. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing (pp. 2920–2923).Google Scholar
  29. 29.
    Candes, E. J., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203–4215.MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Candes, E. J., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Candes, E. J., & Tao, T. (2006). Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52(12), 5406–5425.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Bajwa, W. U., Haupt, J., Sayeed, A. M., & Nowak, R. (2010). Compressed channel sensing: A new approach to estimating sparse multipath channels. Proceedings of the IEEE, 98(6), 1058–1076.CrossRefGoogle Scholar
  34. 34.
    Taubock, G., Hlawatsch, F., Eiwen, D., & Rauhut, H. (2010). Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing. IEEE Journal of Selected Topics in Signal Processing, 4(2), 255–271.CrossRefGoogle Scholar
  35. 35.
    Berger, C. R., Shengli, Z., Preisig, J. C., & Willett, P. (2010). Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing. IEEE Transactions on Signal Processing, 58(3), 1708–1721.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Candes, E., & Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics, 35(6), 2313–2351.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Chen, S., Livingstone, A., & Hanzo, L. (2006). Minimum bit-error rate design for space–time equalization-based multiuser detection. IEEE Transactions on Communications, 54(5), 824–832.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bilal Amin
    • 1
  • Babar Mansoor
    • 2
  • Syed Junaid Nawaz
    • 2
  • Shree K. Sharma
    • 3
  • Mohmammad N. Patwary
    • 4
  1. 1.Department of Electrical EngineeringCOMSATS Institute of Information Technology (CIIT)LahorePakistan
  2. 2.Department of Electrical EngineeringCOMSATS Institute of Information Technology (CIIT)IslamabadPakistan
  3. 3.SnT - securityandtrust.luUniversity of LuxembourgKirchberg, Luxembourg-CityLuxembourg
  4. 4.Faculty of Computing Engineering and SciencesStaffordshire UniversityStoke-on-TrentUK

Personalised recommendations