WAY: Seamless Positioning Using a Smart Device


Smart devices are attractive platforms for researchers to collect data coming from several sensors due to their small size, low cost, and the fact that they are already carried routinely by most people. The capability of smart devices to be used as the target of a positioning system has been already demonstrated in previous works. However, most of them rely on a single technology, or they are specific to the environment or user. In this paper we tackle these constraints by presenting a novel seamless positioning system which fuses the sensors information provided by a portable smart device to perform real time location without interruption and independently of the environment the user is moving. We have tested the system with a commercial smart device in an uncalibrated three floor building and its surroundings fusing the GNSS, WiFi and barometer as frequently used sensors, and the microphone and the proximity contactless technologies as occasionally used sensors. The obtained positioning accuracy mainly depends on the indoor path-loss awareness and on the markers density, showing that without using markers but dynamically estimating the path-loss exponents we obtain an error of <2 m for 90 % of cases.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    If the battery consumption will not be a constraint, both GNSS and WiFi will succeed to the processing block.


  1. 1.

    Zandbergen, P. (2009). Accuracy of iPhone locations: A comparison of assisted GPS, Wifi and cellular positioning. Transactions in GIS, 13(s1), 5–25.

    Article  Google Scholar 

  2. 2.

    Addlesee, M., Curwen, R., Hodges, S., Newmann, J., Steggles, P., Ward, A., et al. (2001). Implementing a sentient computing system. IEEE Computer, 34(8), 50–56.

    Article  Google Scholar 

  3. 3.

    Randell, C., & Muller, H. (2001). Low cost indoor positioning system. In Proceedings of the 3rd international conference on ubiquitous computing (pp. 42–48).

  4. 4.

    Hazas, M., & Ward, A. (2002). A novel broadband ultrasonic location system. In Proceedings of the 4th international conference on ubiquitous computing (pp. 264–280).

  5. 5.

    Ureñna, J., Hernández, A., Villadangos, J. M., Mazo, M., García, J. C., García, J. J., et al. (2007). Advanced sensorial system for an acoustic LPS. Microprocessors and Microsystems, 31, 393–401.

    Article  Google Scholar 

  6. 6.

    González, J. R., & Bleakley, C. J. (2009). High-precision robust broadband ultrasonic location and orientation estimation. IEEE Journal of Selected Topics in Signal Processing, 3(5), 832–844.

    Article  Google Scholar 

  7. 7.

    Werb, J., & Lanzl, C. (1998). Designing a positioning system for finding things and people indoors. IEEE Spectrum, 35(9), 71–78.

    Article  Google Scholar 

  8. 8.

    Mazuelas, S., Bahillo, A., Lorenzo, R. M., Fernández, P., Lago, F., García, E., et al. (2009). Robust indoor positioning provided by real-time RSSI values in unmodified WLAN networks. IEEE Journal of Selected Topics in Signal Processing, 3(5), 821–831.

    Article  Google Scholar 

  9. 9.

    Bahillo, A., Mazuelas, S., Lorenzo, R. M., Fernández, P., Prieto, J., Durán, R. J., et al. (2010). Hybrid RSS-RTT localization scheme for indoor wireless networks. EURASIP Journal on Advances in Signal Processing, 2010, 17:1–17:12. doi:10.1155/2010/126082.

    Article  Google Scholar 

  10. 10.

    Tilch, S., & Mautz, R. (2010). Current investigations at the ETH Zurich in optical indoor positioning. In Proceedings of the 7th workshop on positioning navigation and communication (Vol. 7, pp. 174–178).

  11. 11.

    Willert, V. (2010). Optical indoor positioning using a camera phone. In Proceedings of the 2010 international conference on indoor positioning and indoor navigation.

  12. 12.

    Blankenbach, J., Norrdine, A., & Hellmers, H. (2011). Adaptive signal processing for a magnetic indoor positioning system. In Proceedings of the 2011 international conference on indoor positioning and indoor navigation.

  13. 13.

    Chung, J., Donahoe, M., Schmandt, C., Kim, I.-J., Razavai, P., & Wiseman, M. (2011). Indoor location sensing using geo-magnetism. In Proceedings of the 9th international conference on mobile systems, applications and services (MobiSys’11) (pp. 141–154).

  14. 14.

    Cheung, K. C., Intille, S. S., & Larson, K. (2006). An inexpensive bluetooth-based indoor positioning hack. In Proceedings of the 8th international conference on ubiquitous computing.

  15. 15.

    Subramanian, S. P., Sommer, J., Schmitt, S., & Rosenstiel, W. (2007). SBIL: Scalable indoor localization and navigation service. In Proceedings of the 3rd international conference on wireless communication and sensor networks (pp. 27–30).

  16. 16.

    Wendlandt, K., Berhig, M., & Robertson, P. (2005). Indoor localization with probability density functions based on bluetooth. In IEEE 16th International symposium on personal, indoor and mobile radio communications, PIMRC 2005 (Vol. 3, pp. 2040–2044).

  17. 17.

    Inoue, Y., Sashima, A., & Kurumatani, K. (2009). Indoor positioning system using beacon devices for practical pedestrian navigation on mobile phone. In UIC 2009, LNCS, (Vol. 5585, pp. 251–265).

  18. 18.

    Mandal, A., Lopes, C. V., Givargis, T., Haghighat, A., Jurdak, A., & Baldi, P. (2005). Beep: 3D indoor positioning using audible sound. In Proceedings of the 2nd IEEE consumer communications and networking conference (pp. 348–353).

  19. 19.

    Filonenko, V., Cullen, C., & Carswell, J. D. (2013). Indoor positioning for smartphones using asynchronous ultrasound trilateration. ISPRS International Journal of Geo-Information, 2(3), 598–620.

    Article  Google Scholar 

  20. 20.

    Subbu, K. P., Gozick, B., & Dantu, R. (2013). Locateme: Magnetic-fields-based indoor localization using smartphones. ACM Transactions on Intelligent Systems and Technology (TIST), 4(4), 73:1–73:27.

    Google Scholar 

  21. 21.

    Ascher, C., Kessler, C., Wankerl, M., & Trommer, G. (2010). Dual imu indoor navigation with particle filter based map-matching on a smartphone. In 2010 International conference on indoor positioning and indoor navigation (IPIN) (pp. 1–5).

  22. 22.

    Pei, L., Chen, R., Chen, Y., Leppakoski, H., & Perttula, A. (2009). Indoor/outdoor seamless positioning technologies integrated on smart phone. In First International Conference on advances in satellite and space communications, 2009. SPACOMM 2009 (pp. 141–145).

  23. 23.

    Gallagher, T., Wise, E., Li, B., Dempster, A., Rizos, C., & Ramsey-Stewart, E. (2012). Indoor positioning system based on sensor fusion for the blind and visually impaired. In Proceedings of the 2012 international conference on indoor positioning and indoor navigation (IPIN’12) (pp. 1–9).

  24. 24.

    Liu, J., Chen, R., Pei, L., Guinness, R., & Kuusniemi, H. (2012). A hybrid smartphone indoor positioning solution for mobile LBS. Sensors, 12(12), 17208–17233.

    Article  Google Scholar 

  25. 25.

    Julier, S., Uhlmann, J. K., & Durrant-Whyte, H. F. (2000). A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on automatic control, 45(3), 477–482. http://dblp.uni-trier.de/db/journals/tac/tac45.html#JulierUD00.

  26. 26.

    Steiniger, S., Neun, M., & Alistair, E. (2006). Foundations of location based services. In CartouCHe1-lecture notes on LBS (Vol. 1).

  27. 27.

    Fox, D., Hightower, J., Liao, L., Schulz, D., & Borriello, G. (2003). Bayesian filters for location estimation. IEEE Pervasive Computing, 2(3), 24–33.

    Article  Google Scholar 

  28. 28.

    Wakim, C. F., Capperon, S., & Oksman, J. (2004). A Markovian model of pedestrian behavior. In SMC (4). IEEE (pp. 4028–4033). http://dblp.uni-trier.de/db/conf/smc/smc2004-4.html#WakimCO04.

  29. 29.

    Li, X. (2006). Rss-based location estimation with unknown pathloss model. IEEE Transactions on Wireless Communications, 5(12), 3626–3633. http://dblp.uni-trier.de/db/journals/twc/twc5.html#Li06.

  30. 30.

    Pahlavan, K., & Levesque, A. H. (1995). Wireless information networks. New York: Wiley.

    Google Scholar 

  31. 31.

    Davies, M. (2003). The standard handbook for aeronautical and astronautical engineers. New York: McGraw-Hill.

    Google Scholar 

  32. 32.

    Guide to Reference and Standard Atmosphere Models, American National Standard ANSI ed., American Institute of Aeronautics and Astronautics, 2004.

  33. 33.

    Csapodi, M., & Nagy, A. (2007). New applications for NFC devices. In Proceedings of the 16th IST on mobile and wireless communications summit (pp. 1–5).

  34. 34.

    Borriello, G., Liu, A., Offer, T., Palistrant, C., & Sharp, R. (2005). Walrus: Wireless acoustic location with room-level resolution using ultrasound. In Proceedings of Mobisys 05 (pp. 191–203).

  35. 35.

    Kingstate Electronics Corp., Website, (2014). http://www.kingstate.com.tw.

  36. 36.

    http://www.gsmarena.com/samsung_galaxy_nexus-review-699p5.php. (2014).

Download references


This work has been supported by the Spanish Ministry of Economy and Competitiveness under the ESPHIA project (ref. TIN2014-56042-JIN) and TARSIUS project (ref. TIN2015-71564-C4-4-R). The authors would like to thank Dr. José M. Villadangos for helping with the hardware design of the ultrasound marker.

Author information



Corresponding author

Correspondence to Alfonso Bahillo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bahillo, A., Aguilera, T., Álvarez, F.J. et al. WAY: Seamless Positioning Using a Smart Device. Wireless Pers Commun 94, 2949–2967 (2017). https://doi.org/10.1007/s11277-016-3759-x

Download citation


  • Sensor fusion
  • Seamless positioning
  • Smart devices