Skip to main content

Feasibility of Green Network Deployment for Heterogeneous Networks


Green technology is a new term which is used to describe the energy efficient technologies. In the context of mobile communications industry, complying with the green technology strategy is a challenge. This is because of the tradeoff between the Quality of Service (QoS) provided and the total energy used in the transmission. Reducing the transmission energy may cause degradation in the QoS, more distinctively, in highly populated areas. This paper explores the possibility of achieving the green technology goal in planning and deployment of the HetNet mobile network with efficient network QoS. A decoupled two stage multi-objective genetic algorithm is developed to provide the network base station distribution that would satisfy both the network QoS and green network demands. In the first stage the algorithm estimates the base station parameters for more energy efficient HetNet deployment for optimum network coverage. The initial base station candidate locations are provided by a network operator in Kuala Lumpu, Malaysia. The second stage of the developed algorithm selects the number and location of RS associated with each base station optimized in the first stage to improve the network capacity. To optimize the network power, a novel arrival rate based HetNet total power consumption model is derived to investigate the parameters that affect the network power expenditure. Results show that a remarkable energy saving of about 40 % of the operator transmission power could be achieved with full network coverage. The addition of RS associated with each base station would greatly improve network capacity on the expense of its power expenditure. The relative RS to base station capacity plays major rule in reducing HetNet power expenditure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25


  1. Adeec, U. (2000). Time complexity of genetic algorithms on exponentially scaled problems. Urbana, 51, 61,801.

    Google Scholar 

  2. Al-Samawi, A., Sali, A., Nissirat, L., Noordin, N. K., Othman, M., & Hashim, F. (2015). Wireless network power optimisation using relay stations blossoming and withering technique. Transactions on Emerging Telecommunications Technologies (pp. 1–5). Wiley.

  3. Al-Samawi, A., Sali, A., Noordin, N. K., Othman, M., & Hashim, F. (2013). Base station location optimisation in lte using genetic algorithm. In: International conference on convergence (ICTC) (pp. 336–341). IEEE.

  4. Ambrosy, A., Auer, G., Blume, O., & Caretti, M., et al. (2010). D2. 2: Definition and parameterization of reference systems and scenarios. INFSOICT-247733 EARTH (Energy Aware Radio and NeTwork TecHnologies).

  5. Beaulieu, N. C., Abu-Dayya, A. A., & McLane, P. J. (1995). Estimating the distribution of a sum of independent lognormal random variables. IEEE Transactions on Communications, 43(12), 2869.

    Article  Google Scholar 

  6. Belhouchet, M. L. (2010). Ebdelli. m. hakim. In: ITU/BDT Arab Regional Workshop on 4G Wireless Systems LTE Technology Session 5: LTE Technology Performance Evaluation.

  7. Böhringer, C., Löschel, A., Moslener, U., & Rutherford, T. F. (2009). EU climate policy up to 2020: An economic impact assessment. Energy Economics, 31, S295–S305.

    Article  Google Scholar 

  8. Calégari, P., Guidec, F., Kuonen, P., Chamaret, B., Ubéda, S., Josselin, S., Wagner, D., & Pizarosso, M. (1996). Radio network planning with combinatorial optimization algorithms. In: ACTS Mobile Telecommunications Summit, 96 (Vol. 2, pp. 707–713).

  9. Calégari, P., Guidec, F., Kuonen, P., & Nielsen, F. (2001). Combinatorial optimization algorithms for radio network planning. Theoretical Computer Science, 263(1), 235–245.

    MathSciNet  Article  MATH  Google Scholar 

  10. Calégari, P., Kuonen, P., Guidec, F., & Wagner, D. (1997). A genetic approach to radio network optimization for mobile systems. In: VTC’97 (Vol. 2, pp. 755–759).

  11. On Electromagnetic Safety (SCC39), I.I.C.: Ieee standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 khz to 300 ghz. IEEE Standard C95.1 (2006)

  12. Erradi, N., Alami, F. T., Aknin, N., & El Moussaoui, A. (2013). Genetic algorithms to optimize base station sitting in wcdma networks. International Journal of Advanced Computer Science and Applications, 4(3), 218–220.

    Article  Google Scholar 

  13. Fenton, L. (1960). The sum of log-normal probability distributions in scatter transmission systems. IRE Transactions on Communications Systems, 8(1), 57–67.

    Article  Google Scholar 

  14. Garzia, F., Perna, C., & Cusani, R. (2010). Optimization of umts network planning using genetic algorithms. Communications and Network, 2(3), 193–199.

    Article  Google Scholar 

  15. Jalili, B., & Dianati, M. (2010) Application of taboo search and genetic algorithm in planning and optimization of umts radio networks. In: Proceedings of the 6th International Wireless Communications and Mobile Computing Conference (pp. 143–147). ACM

  16. Jaloun, M., Guennoun, Z., & Elasri, A. (2011). Use of genetic algorithm in the optimisation of the lte deployment. International Journal of Wireless and Mobile Networks (IJWMN), 3, 42–49.

    Article  Google Scholar 

  17. Johnson, J. M., & Rahmat-Samii, Y. (1995) Genetic algorithm optimization of wireless communication networks. In: Digest antennas and propagation society international symposium (Vol. 4, pp. 1964–1967). IEEE.

  18. Koutitas, G. (2010). Green network planning of single frequency networks. IEEE Transactions on Broadcasting, 56(4), 541–550.

    Article  Google Scholar 

  19. Laki, I., Farkas, L., & Nagy, L. (2001) Cell planning in mobile communication systems using sga optimization. In: International conference on trends in communications (Vol. 1, pp. 124–127). IEEE.

  20. Lieska, K., Laitinen, E., & Lahteenmaki, J. (1998). Radio coverage optimization with genetic algorithms. In: The Ninth IEEE international symposium on personal, indoor and mobile radio communications (Vol. 1, pp. 318–322). IEEE.

  21. Marsan, M. A., Chiaraviglio, L., Ciullo, D., & Meo, M. (2009). Optimal energy savings in cellular access networks. In: IEEE international conference on communications workshops (pp. 1–5). IEEE.

  22. Meunier, H., Talbi, E.G., & Reininger, P. (2000). A multiobjective genetic algorithm for radio network optimization. In: Proceedings of the 2000 congress on evolutionary computation (Vol. 1, pp. 317–324). IEEE.

  23. Motorola, L. T. E. (2007). A technical overview. Technical white paper.

  24. Rolich, T., & Grundler, D. (2009). Minimizing environmental electromagnetic field pollution adjusting transmitter parameters using genetic algorithm. In: IEEE congress on evolutionary computation (pp. 881–887). IEEE.

  25. Sakthivel, S., & Suresh, R. (2006). A genetic algorithm approach to solve mobile base station location problem. International Journal of Soft Computing, 1(3), 160–165.

    Google Scholar 

  26. Sivanandam, S., & Deepa, S. (2008). Genetic algorithm optimization problems. Berlin: Springer.

    Book  MATH  Google Scholar 

  27. St-Hilaire, M., & Liu, S. (2011). Comparison of different meta-heuristics to solve the global planning problem of umts networks. Computer Networks, 55(12), 2705–2716.

    Article  Google Scholar 

  28. Stations, M. P. B., & Monitors, B. (2013). Section 13 radiofrequency safety guidelines and standards. Radiofrequency Toolkit for Environmental Health Practitioners (pp. 327–338).

  29. Sun, H., Li, N., Chen, Y., Dong, J., Liu, N., Han, Y., et al. (2012). A method of pci planning in lte based on genetic algorithm. In: Progress in electromagnetics research symposium (pp. 19–23). Moscow, Russia.

  30. Talukder, Z., Islam, S., Mahjabeen, D., Ahmed, A., Rafique, S., & Rashid, M. (2013). Cell coverage evaluation for lte and wimax in wireless communication system. World Applied Sciences Journal, 22(10), 1486–1491.

    Google Scholar 

  31. Thierens, D., Goldberg, D. E., & Pereira, A. G. (1998). Domino convergence, drift, and the temporal-salience structure of problems. In: Evolutionary computation proceedings, 1998. The 1998 IEEE international conference on IEEE world congress on computational intelligence (pp. 535–540). IEEE.

  32. Tutuncuoglu, K., & Yener, A. (2010). Energy-awareness in wireless sensor networks powered with renewable sources. Tech. rep.: Pennsylvania State University, PA, USA.

  33. Valavanis, I. K., Athanasiadou, G., Zarbouti, D., & Tsoulos, G. V. (2014). Base-station location optimization for lte systems with genetic algorithms. In: Proceedings of European wireless (pp. 1–6). VDE.

  34. Wang, J. Y., Wang, J. B., Song, X., Chen, M., & Zhang, J. (2014). Network planning for distributed antenna-based high-speed railway mobile communications. Transactions on Emerging Telecommunications Technologies, 25(7), 707–722.

    Article  Google Scholar 

  35. Zhang, X., Zhang, J., Huang, Y., & Wang, W. (2013). On the study of fundamental trade-offs between qoe and energy efficiency in wireless networks. Transactions on Emerging Telecommunications Technologies, 24(3), 259–265.

    Article  Google Scholar 

Download references


This project entitled Green Radio Optimization for wireless Networks funded by Malaysia Ministry of Education (MOE), Fundamental Research Grant Scheme (FRGS/1/11/TK/UPM/02/2). We would also like to thank Jabatan Ukur Dan Pemetaan Malaysia (JUPEM) and Malaysian Communications and Multimedia Commission (MCMC) for their cooperation and help in providing the relevant data.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Aida Al-Samawi.



The shadow fading is modeled as a normal distribution with zero mean and \(\sigma\) standard deviation as follows:

$$\begin{aligned} {X}=\frac{1}{\sqrt{{2} \pi \sigma }} {e}^ {x^2/2\sigma ^2} \end{aligned}$$

Thus the total pathloss can be written as the summation of the mean pathloss and the shadow fading component:

$$\begin{aligned} {Pl}=\overline{Pl} + X \end{aligned}$$

where \(\overline{Pl}\) is the local mean pathloss defined as:

$$\begin{aligned} {Pl}=A + Blog_{10} \left( r\right) \end{aligned}$$

where A is the intercept point, \(B=10n\), n is the pathloss exponent, and r is the distance from the base station in meter.

By defining the Shadow Fading Margin (SFM), the probability of cell coverage can be defined by requiring the sum of the signal received and the SFM at distance r from the receiver to be greater than the mean pathloss, thus:

$$\begin{aligned} P_{cov}=Pr\left( Pl+SFM >\overline{Pl}\right) \end{aligned}$$

Substituting Eq. (46) in (48) and calculating at distance r, yields:

$$\begin{aligned} P_{cov} &= Pr\left( \overline{Pl}(r)+X+SFM >\overline{Pl}(R)\right) \end{aligned}$$
$$\begin{aligned} P_{cov} &= Pr\left( X > \overline{Pl}(R) - \overline{PL}(r) - SFM \right) \end{aligned}$$

where r is the user distance from the base station and R is the radius of the base station.

Using Eq. (47)

$$\begin{aligned} P_{cov} &= Pr(X>A-Blog_{10}(R)- (A+Blog_{10} (r)) - SFM) \end{aligned}$$
$$\begin{aligned} P_{cov} &= Pr\left( X>Blog_{10}\left( \frac{R}{r} \right) - SFM \right) \end{aligned}$$

From Eq. (45), the coverage probability can be written as:

$$\begin{aligned} P_{cov}=\frac{1}{\sqrt{2\pi \sigma }} \int ^{\infty }_{Blog_{10}(R/r)-SFM} {\mathrm {e}}^{\frac{x^2}{2\sigma ^2}}\,\mathrm {d}x \end{aligned}$$

Defining \(t=x/\sigma\) and substituting in Eq. (53)

$$\begin{aligned} P_{cov} &= \frac{1}{\sqrt{2\pi }} \int ^{\infty }_{\frac{Blog_{10}(R/r)-SFM}{\sigma }} {\mathrm {e}}^{\frac{t^2}{2}}\,{\mathrm {d}}t \end{aligned}$$
$$\begin{aligned} P_{cov} &= erf\left( \left( Blog_{10}\left( R/r\right) -SFM\right) /\sigma \right) \end{aligned}$$

Equation (55) defines the coverage probability at a distance r from the base station. For cell coverage probability (Pcell), it is defined as the average of the coverage probability at all possible locations covered by the cell. Mathematically Pcell can be written as:

$$\begin{aligned} P_{cell}=\int ^{2\pi }_{0} \int ^{R}_{0} {\mathrm P}{_{cov}(r)}P(r,\varphi )\,{\mathrm {d}}r {\mathrm (d)}\varphi \end{aligned}$$

where \(P(r,\varphi )\) is the distribution function of the mobile users.

For uniform users distribution, the probability of a user to be at distance r with angle \(\varphi\) from the base station can be defined as follows:

$$\begin{aligned} P(r,\varphi )=\frac{r}{\pi R^2}, 0<r<R, and\,0<\varphi <2\pi \end{aligned}$$

From Eqs. (53), (56) and (57), the cell probability can be written as:

$$\begin{aligned} P_{cell}=\frac{2}{R^2}\int ^{R}_{0}{\mathrm r}(erf((B log_{10} (R/r) -SFM)/\sigma )){\mathrm {d}}r \end{aligned}$$

where the erf is defined as:

$$\begin{aligned} erf(t)=\int ^{\infty }_{\frac{Blog_{10}(R/r)-SFM}{\sigma }} {\mathrm e}^{{-t^2}/2} {\mathrm {d}}t \end{aligned}$$

Let define

$$\begin{aligned} x= \frac{\left( Blog_{10}\left( \frac{R}{r}\right) -SFM\right) }{\sigma } \end{aligned}$$

Calculating for r, yields

$$\begin{aligned} \sigma x &= \left( Blog_{10}\frac{R}{r}-SFM\right) \end{aligned}$$
$$\begin{aligned} \frac{(\sigma x + SFM)}{B} & = log_{10}\left( \frac{R}{r}\right) =\frac{ln\left( \frac{R}{r}\right) }{2.303} \end{aligned}$$


$$\begin{aligned}&ln(10)= 2.303 \end{aligned}$$
$$\begin{aligned}&\frac{(2.303(\sigma x + SFM))}{B}=ln\left( \frac{R}{r}\right) \end{aligned}$$
$$\begin{aligned}&\frac{R}{r}=e\left(\frac{2.303 \sigma x}{B}\right) \times e\left(\frac{2.303 SFM}{B}\right) \end{aligned}$$


$$\begin{aligned} c= \left( \frac{2.303 \sigma }{B}\right) , {\text { and }} \ b= e\left(\frac{2.303 SFM}{B}\right) \end{aligned}$$

Equation (66) will be:

$$\begin{aligned} \left( \frac{R}{r}\right) =be^{cx} \end{aligned}$$

Changing the limits of the integration and substitute in Eq. (58), yields:

$$\begin{aligned} r= \left( \frac{R}{b}\right) e^{cx} \longrightarrow dr =\left( \frac{-cR}{b}\right) e^{cx} dx = -crdx \end{aligned}$$

\(r\longrightarrow 0 \longrightarrow x \longrightarrow \infty\)

\(r\longrightarrow R= e^{cx} \longrightarrow (\frac{-ln(b)}{c})=x\)

$$\begin{aligned} P_{cell}= & {} \left( \frac{2}{R^2}\right) \int ^{\left( \frac{-ln(b)}{c}\right) }_{\infty }\nonumber \\&\left( \left( \frac{R}{b}\right) e^{-cx} erf(x) \left( -c\left( \frac{R}{b}\right) e^{-cx}\right) \right) {\mathrm {d}}x \end{aligned}$$
$$\begin{aligned} P_{cell}= & {} \left( \frac{-2c}{b^2}\right) \int ^{\left( \frac{-ln(b)}{c}\right) }_{\infty } {\mathrm e}(^{-2cx} erf(x)) {\mathrm {d}}x \end{aligned}$$
$$\begin{aligned} P_{cell}= & {} \left( \frac{2c}{b^2}\right) \int ^{\infty }_{\left( \frac{-lb(b)}{c}\right) } {\mathrm e}(^{-2cx} erf(x)) {\mathrm {d}}x \end{aligned}$$

By integration Eq. (71) by parts, the cell coverage probability is represented as:

$$\begin{aligned} P_{cell}=\frac{b^2 erf\left( \frac{-ln((b)}{c}\right) }{2c} - \frac{e^{-c^2}}{2c\sqrt{2\pi }} erf\left( \frac{-ln(b)}{c\sqrt{2}} + \frac{c}{\sqrt{2}}\right) \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Samawi, A., Sali, A., Noordin, N.K. et al. Feasibility of Green Network Deployment for Heterogeneous Networks. Wireless Pers Commun 94, 1443–1476 (2017).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • Wireless network planning
  • Decoupled GA optimization
  • Heterogeneous network
  • LTE network
  • Heterogeneous network power consumption