Wireless Personal Communications

, Volume 92, Issue 2, pp 785–805 | Cite as

Energy-Efficient Hierarchical Routing for Wireless Sensor Networks: A Swarm Intelligence Approach

Article

Abstract

Energy efficient routing in wireless sensor networks (WSNs) require non-conventional paradigm for design and development of power aware protocols. Swarm intelligence (SI) based metaheuristic can be applied for optimal routing of data, in an energy constraint WSNs environment. In this paper, we present BeeSwarm, a SI based energy-efficient hierarchical routing protocol for WSNs. Our protocol consists of three phases: (1) Set-up phase-BeeCluster, (2) Route discovery phase-BeeSearch and (3) Data transmission phase-BeeCarrier. Integration of three phases for clustering, data routing and transmission, is the key aspect of our proposed protocol, which ultimately contributes to its robustness. Evaluation of simulation results show that BeeSwarm perform better in terms of packet delivery, energy consumption and throughput with increased network life compared to other SI based hierarchical routing protocols.

Keywords

Wireless sensor networks Swarm intelligence Energy efficient routing 

References

  1. 1.
    Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292.CrossRefGoogle Scholar
  2. 2.
    Al-Karaki, J. N., & Kamal, A. E. (2004). Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications, 11(6), 6.CrossRefGoogle Scholar
  3. 3.
    Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad hoc Networks, 3(3), 325.CrossRefGoogle Scholar
  4. 4.
    Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, 30(14), 2826.CrossRefGoogle Scholar
  5. 5.
    Tyagi, S., & Kumar, N. (2013). A systematic review on clustering and routing techniques based upon LEACH protocol for wireless sensor networks. Journal of Network and Computer Applications, 36(2), 623–645.CrossRefGoogle Scholar
  6. 6.
    Qi, H., Iyengar, S. S., & Chakrabarty, K. (2001). Distributed sensor networks—A review of recent research. Journal of the Franklin Institute, 338(6), 655.CrossRefMATHGoogle Scholar
  7. 7.
    Heinzelman, W. B., Chandrakasan, A. P., Balakrishnan, H., et al. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660.CrossRefGoogle Scholar
  8. 8.
    De, S., Qiao, C., & Wu, H. (2003). Meshed multipath routing with selective forwarding: An efficient strategy in wireless sensor networks. Computer Networks, 43(4), 481.CrossRefMATHGoogle Scholar
  9. 9.
    Mhatre, V., & Rosenberg, C. (2004). Design guidelines for wireless sensor networks: Communication, clustering and aggregation. Ad Hoc Networks, 2(1), 45.CrossRefGoogle Scholar
  10. 10.
    Chang, J. H., & Tassiulas, L. (2004). Maximum lifetime routing in wireless sensor networks. IEEE/ACM Transactions on Networking (TON), 12(4), 609.CrossRefGoogle Scholar
  11. 11.
    Krishnan, R., & Starobinski, D. (2006). Efficient clustering algorithms for self-organizing wireless sensor networks. Ad Hoc Networks, 4(1), 36.CrossRefGoogle Scholar
  12. 12.
    Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366.CrossRefGoogle Scholar
  13. 13.
    Yi, S., Heo, J., Cho, Y., & Hong, J. (2007). PEACH: Power-efficient and adaptive clustering hierarchy protocol for wireless sensor networks. Computer Communications, 30(14), 2842.CrossRefGoogle Scholar
  14. 14.
    Mao, S., & Hou, Y. T. (2007). BeamStar: An edge-based approach to routing in wireless sensor networks. IEEE Transactions on Mobile Computing, 6(11), 1284.CrossRefGoogle Scholar
  15. 15.
    Jin, Y., Wang, L., Kim, Y., & Yang, X. (2008). EEMC: An energy-efficient multi-level clustering algorithm for large-scale wireless sensor networks. Computer Networks, 52(3), 542.CrossRefMATHGoogle Scholar
  16. 16.
    Kumar, D., Aseri, T. C., & Patel, R. (2009). EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Computer Communications, 32(4), 662.CrossRefGoogle Scholar
  17. 17.
    Lung, C. H., & Zhou, C. (2010). Using hierarchical agglomerative clustering in wireless sensor networks: An energy-efficient and flexible approach. Ad Hoc Networks, 8(3), 328.CrossRefGoogle Scholar
  18. 18.
    Chamam, A., & Pierre, S. (2010). A distributed energy-efficient clustering protocol for wireless sensor networks. Computers and Electrical Engineering, 36(2), 303.CrossRefMATHGoogle Scholar
  19. 19.
    Dimokas, N., Katsaros, D., & Manolopoulos, Y. (2010). Energy-efficient distributed clustering in wireless sensor networks. Journal of Parallel and Distributed Computing, 70(4), 371.CrossRefMATHGoogle Scholar
  20. 20.
    Zhang, H., & Shen, H. (2010). Energy-efficient beaconless geographic routing in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 21(6), 881.CrossRefGoogle Scholar
  21. 21.
    Deng, S., Li, J., & Shen, L. (2011). Mobility-based clustering protocol for wireless sensor networks with mobile nodes. IET Wireless Sensor Systems, 1(1), 39.CrossRefGoogle Scholar
  22. 22.
    Mao, X., Tang, S., Xu, X., Li, X. Y., & Ma, H. (2011). Energy-efficient opportunistic routing in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(11), 1934.CrossRefGoogle Scholar
  23. 23.
    Huang, H., Hu, G., Yu, F., & Zhang, Z. (2011). Energy-aware interference-sensitive geographic routing in wireless sensor networks. IET Communications, 5(18), 2692.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mottola, L., & Picco, G. P. (2011). MUSTER: Adaptive energy-aware multisink routing in wireless sensor networks. IEEE Transactions on Mobile Computing, 10(12), 1694.CrossRefGoogle Scholar
  25. 25.
    Mohammad El-Basioni, B. M., Abd El-kader, S. M., Eissa, H. S., & Zahra, M. M. (2011). An optimized energy-aware routing protocol for wireless sensor network. Egyptian Informatics Journal, 12(2), 61.CrossRefGoogle Scholar
  26. 26.
    Aioffi, W. M., Valle, C. A., Mateus, G. R., & da Cunha, A. S. (2011). Balancing message delivery latency and network lifetime through an integrated model for clustering and routing in wireless sensor networks. Computer Networks, 55(13), 2803.CrossRefGoogle Scholar
  27. 27.
    Liu, Z., Zheng, Q., Xue, L., & Guan, X. (2012). A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Future Generation Computer Systems, 28(5), 780.CrossRefGoogle Scholar
  28. 28.
    Wang, B., Lim, H. B., & Ma, D. (2012). A coverage-aware clustering protocol for wireless sensor networks. Computer Networks, 56(5), 1599.CrossRefGoogle Scholar
  29. 29.
    Huang, P., Wang, C., & Xiao, L. (2012). Improving end-to-end routing performance of greedy forwarding in sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(3), 556.CrossRefGoogle Scholar
  30. 30.
    Anisi, M. H., Abdul-Salaam, G., Idris, M. Y. I., Wahab, A. W. A., & Ahmedy, I. (2015). Energy harvesting and battery power based routing in wireless sensor networks. Wireless Networks, 22(1), 1–18.CrossRefGoogle Scholar
  31. 31.
    Abdul-Salaam, G., Abdullah, A. H., Anisi, M. H., Gani, A., & Alelaiwi, A. (2016). A comparative analysis of energy conservation approaches in hybrid wireless sensor networks data collection protocols. Telecommunication Systems, 61, 159.CrossRefGoogle Scholar
  32. 32.
    Selvakennedy, S., Sinnappan, S., & Shang, Y. (2007). A biologically-inspired clustering protocol for wireless sensor networks. Computer Communications, 30(14), 2786.CrossRefGoogle Scholar
  33. 33.
    Wang, L., Zhang, R., & Geng, S. (2009). An energy-balanced ant-based routing protocol for wireless sensor networks. In 5th International Conference on Wireless Communications, Networking and Mobile Computing, IEEE 2009 (pp. 1–4).Google Scholar
  34. 34.
    Yang, J., Xu, M., Zhao, W., & Xu, B. (2009). A multipath routing protocol based on clustering and ant colony optimization for wireless sensor networks. Sensors, 10(5), 4521.CrossRefGoogle Scholar
  35. 35.
    Bari, A., Wazed, S., Jaekel, A., & Bandyopadhyay, S. (2009). A genetic algorithm based approach for energy efficient routing in two-tiered sensor networks: A genetic algorithm based approach for energy efficient routing in two-tiered sensor networks. Ad Hoc Networks, 7(4), 665.CrossRefGoogle Scholar
  36. 36.
    Cobo, L., Quintero, A., & Pierre, S. (2010). Ant-based routing for wireless multimedia sensor networks using multiple QoS metrics. Computer Networks, 54(17), 2991.CrossRefGoogle Scholar
  37. 37.
    Najafi, F., Dezfouli, M. A., & Rostami, H. (2011). Formatting a novel clustering protocol based on artificial immune system algorithm for wireless sensor networks. International Journal of Advanced Engineering Sciences and Technologies, 6(6), 256–260.Google Scholar
  38. 38.
    Song, M. A. O., & Zhao, C. L. (2011). Unequal clustering algorithm for WSN based on fuzzy logic and improved ACO. The Journal of China Universities of Posts and Telecommunications, 18(6), 89. CrossRefGoogle Scholar
  39. 39.
    Saleem, M., Di Caro, G. A., & Farooq, M. (2011). Swarm intelligence based routing protocol for wireless sensor networks: Survey and future directions. Information Sciences, 181(20), 4597.CrossRefGoogle Scholar
  40. 40.
    Kulkarni, R. V., Forster, A., & Venayagamoorthy, G. K. (2011). Computational intelligence in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 13(1), 68.CrossRefGoogle Scholar
  41. 41.
    Liu, M., Xu, S., & Sun, S. (2012). An agent-assisted QoS-based routing algorithm for wireless sensor networks. Journal of Network and Computer Applications, 35(1), 29.CrossRefGoogle Scholar
  42. 42.
    Attea, B. A., & Khalil, E. A. (2012). A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Applied Soft Computing, 12(7), 1950–1957.CrossRefGoogle Scholar
  43. 43.
    Saleem, M., & Farooq, M. (2012). Beesensor: A bee-inspired power aware routing protocol for wireless sensor networks. In Applications of Evolutionary Computing (pp. 81–90). Berlin: Springer.Google Scholar
  44. 44.
    Yau, K. L. A., Komisarczuk, P., & Teal, P. D. (2012). Reinforcement learning for context awareness and intelligence in wireless networks: Review, new features and open issues. Journal of Network and Computer Applications, 35(1), 253.CrossRefGoogle Scholar
  45. 45.
    Guo, W., & Zhang, W. (2014). A survey on intelligent routing protocols in wireless sensor networks. Journal of Network and Computer Applications, 38, 185–201.CrossRefGoogle Scholar
  46. 46.
    Hoang, D., Yadav, P., Kumar, R., & Panda, S. (2014). Real-time implementation of a Harmony search algorithm-based clustering protocol for energy efficient wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 774–783.CrossRefGoogle Scholar
  47. 47.
    Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127.CrossRefGoogle Scholar
  48. 48.
    Celal Ozturk, D. K., & Hancer, E. (2015). Dynamic clustering with improved binary artificial bee colony algorithm. Applied Soft Computing, 28, 69–80.CrossRefGoogle Scholar
  49. 49.
    Kong, L., Pan, J. S., Tsai, P. W., Vaclav, S., & Ho, J. H. (2015). A balanced power consumption algorithm based on enhanced parallel cat swarm optimization for wireless sensor network. International Journal of Distributed Sensor Networks.Google Scholar
  50. 50.
    Hu, Y. F., Ding, Y. S., Ren, L. H., Hao, K. R., & Han, H. (2012). n endocrine cooperative particle swarm optimization algorithm for routing recovery problem of wireless sensor networks with multiple mobile sinks. Information Sciences, 300, 100–113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.I K Gujral Punjab Technical UniversityKapurthalaIndia
  2. 2.S B S State Technical CampusFerozepurIndia

Personalised recommendations