The RFID Propagation Scenario


Measurement campaigns have been conducted in order to characterize the RFID propagation channel. A number of propagation scenarios have been exploited, including both outdoor and indoor environments in typical manufacturing plants. Field data are then analyzed and a path loss model is proposed. Such a model is based on an improvement of the classical two-ray path loss mechanism, additionally adjusted to encompass the effects of the inherently directional propagation properties of the RFID environment. The fading effect has also been characterized, and it has been observed that the Extreme Value Distribution may yield a good fitting to the experimental data. To the best of the authors’s knowledge, the scope and reach of the experiment as well as the proposed model are unprecedented in the literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1.

    Part of this work was presented at 2012 IEEE PIMRC [15].


  1. 1.

    Specification for RFID Air Interface Radio Frequency Identity Protocols Class 1 Generation 2 UHF RFID. (2008). Protocol for communication at 860–960 MHz. Technical report 9, EPCglobal Inc.

  2. 2.

    Arnitz, D., Muehlmann, U., & Witrisal, K. (2012). Characterization and modeling of UHF RFID channels for ranging and localization. IEEE Transactions on Antennas and Propagation, 60(5), 2491–2501. doi:10.1109/TAP.2012.2189705.

    MathSciNet  Article  Google Scholar 

  3. 3.

    Program Brazil - ID, Campinas, Brazil (2012).

  4. 4.

    Boyer, C., & Roy, S. (2013). Space time coding for backscatter RFID. IEEE Transactions on Wireless Communications, 12(5), 2272–2280. doi:10.1109/TWC.2013.031313.120917.

    Article  Google Scholar 

  5. 5.

    Angerer, C., Langwieser, R., & Rupp, M. (2010). Direction of arrival estimation by phased arrays in RFID. In The third international EURASIP workshop on RFID technology (RFID 2010) (pp. 57–61).

  6. 6.

    Boaventura, A., & Carvalho, N. (2013). Extending reading range of commercial RFID readers. IEEE Transactions on Microwave Theory and Techniques, 61(1), 633–640. doi:10.1109/TMTT.2012.2229288.

    Article  Google Scholar 

  7. 7.

    Murdock, J., & Rappaport, T. (2014). Consumption Factor and power-efficiency factor: A theory for evaluating the energy efficiency of cascaded communication systems. IEEE Journal on Selected Areas in Communications, 32(2), 221–236. doi:10.1109/JSAC.2014.141204.

    Article  Google Scholar 

  8. 8.

    Jung, S., Kim, M., & Yang, Y. (2012). Baseband noise reduction method using captured TX signal for UHF RFID reader applications. IEEE Transactions on Industrial Electronics, 59(1), 592–598. doi:10.1109/TIE.2011.2138673.

    Article  Google Scholar 

  9. 9.

    Chawla, V., & Ha, D. S. (2007). An overview of passive RFID. IEEE Communications Magazine, 45(9), 11–17. doi:10.1109/MCOM.2007.4342873.

    Article  Google Scholar 

  10. 10.

    Zhang, Z., Lu, Z., Saakian, V., Qin, X., Chen, Q., & Rong Zheng, L. (2014). Item-level indoor localization with passive UHF RFID based on tag interaction analysis. IEEE Transactions on Industrial Electronics, 61(4), 2122–2135. doi:10.1109/TIE.2013.2264785.

    Article  Google Scholar 

  11. 11.

    Griffin, J., Durgin, G., Haldi, A., & Kippelen, B. (2006). RF tag antenna performance on various materials using radio link budgets. IEEE Antennas and Wireless Propagation Letters, 5(1), 247–250. doi:10.1109/LAWP.2006.874072.

    Article  Google Scholar 

  12. 12.

    Sato, Y., Mitsugi, J., Nakamura, O., & Murai, J. (2012). Theory and performance evaluation of group coding of RFID tags. IEEE Transactions on Automation Science and Engineering, 9(3), 458–466. doi:10.1109/TASE.2012.2193125.

    Article  Google Scholar 

  13. 13.

    Gaitan, A., Popa, V., Gaitan, V., Petrariu, A., Lavric, A., & Gherasim, S. (2012). RFID network traffic analysis based on an empirical model. In 2012 9th international conference on communications (COMM) (pp. 201–204). doi:10.1109/ICComm.2012.6262549.

  14. 14.

    Friedewald, O., Papenbroock, J., & Herzog, M. A. (2013). Analysis of the radio propagation model at RFID applications. In Proceedings of 2013 European conference on smart objects, systems and technologies (SmartSysTech) (pp. 1–4).

  15. 15.

    Goes, A., Cardieri, P., & Yacoub, M. (2012). Characterization of the RFID deterministic path loss in manufacturing environments. In 2012 IEEE 23rd international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 647–652). doi:10.1109/PIMRC.2012.6362864.

  16. 16.

    Lazaro, A., Girbau, D., & Salinas, D. (2009). Radio link budgets for UHF RFID on multipath environments. IEEE Transactions on Antennas and Propagation, 57(4), 1241–1251. doi:10.1109/TAP.2009.2015818.

    Article  Google Scholar 

  17. 17.

    Nikitin, P., & Rao, K. (2008). Antennas and propagation in UHF RFID systems. In 2008 IEEE international conference on RFID (pp. 277–288). doi:10.1109/RFID.2008.4519368.

  18. 18.

    Siwiak, K. Y. B. (2007). Radiowave propagation and antennas for personal communications. London: Artech House.

    Google Scholar 

Download references


This work was partially sponsored by CNPq, Grant Nos. 312.146/2012-4 and 304.248/2014-2, and by Finep (with Funttel resources), Grant 01.14.0231.00, under the Radiocommunications Reference Center (Centro de Referência em Radiocomunicações—CRR). The authors would like to thank CAPES and CNPq for their financial support, and UNICAMP and the companies that made available their premises for the measurements.

Author information



Corresponding author

Correspondence to Adriano Almeida Goes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goes, A.A., Cardieri, P. & Yacoub, M.D. The RFID Propagation Scenario. Wireless Pers Commun 92, 437–454 (2017).

Download citation


  • RFID
  • Propagation model
  • Backscattering and short-term fading