Skip to main content

Advertisement

Log in

An Efficient Image Contrast Enhancement Algorithm Using Genetic Algorithm and Fuzzy Intensification Operator

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Image contrast enhancement algorithms play a crucial role in image processing and computer vision. The main challenge in contrast enhancement is that an algorithm suitable for low contrast distorted images does not suit for high contrast distorted images. In this paper, an efficient contrast enhancement algorithm with automated parameterization is proposed using the concept of genetic algorithm and fuzzy intensification operator. Main focus of the proposed method is to improve the visibility information of an image by manipulating their intensity information. Simulation results of the proposed fuzzy-genetic based method were compared with standard existing methods such as log, gamma, linear contrast stretching, histogram equalization, adaptive histogram equalization and rule based fuzzy method using their default parameter values. Performance of the proposed and existing methods on very low, low, moderate, high and very high levels of contrast distorted images were quantitatively measured using peak signal to noise ratio (PSNR), structural similarity index measure (SSIM) and feature similarity index measure (FSIM). The PSNR, SSIM and FSIM values were statistically analysed by two-way ANOVA. Results of this experiment inferred that (a) the contrast enhancement techniques performed well when the level of distortions were very low to moderate, (b) contrast enhancement was better in the proposed fuzzy-genetic based method than other existing methods, and (c) overall, the proposed fuzzy-genetic based method performed well on very low to very high levels of distorted images with higher PSNR, SSIM and FSIM values than other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Surya Prabha, D., & Satheesh Kumar, J. (2015). Assessment of banana fruit maturity by image processing technique. Journal of Food Science and Technology, 52(3), 1316–1327.

    Article  Google Scholar 

  2. Surya Prabha, D., & Satheesh Kumar, J. (2013). Three dimensional object detection and classification methods: a study. International Journal of Engineering Research and Science and Technogy, 2(2), 33–42.

    Google Scholar 

  3. Surya Prabha, D., & Satheesh Kumar, J. (2014). Survey on applications of image processing methods in agriculture sector. Proceeding of International Conference on Convergence Technology, 4(1), 997–999.

    Google Scholar 

  4. Xeng, H. D., & Xu, H. (2000). A novel fuzzy logic approach to contrast enhancement. Pattern Recognition, 33, 809–819.

    Article  Google Scholar 

  5. Arici, T., Dikbas, S., & Altunbasak, Y. (2009). A histogram modification framework and its application for image contrast enhancement. IEEE Transactions on Image Processing, 18, 1921–1935.

    Article  MathSciNet  Google Scholar 

  6. Oppenheim, A. V., Schafer, R. W., & Stockham, T. G. J. (1968). Nonlinear filtering of multiplied and convolved signals. IEEE Transactions on Audio and Electroacoustics, 56, 1264–1291.

    Google Scholar 

  7. Toet, A. (1990). Adaptive multi-scale contrast enhancement through non-linear pyramid recombination. Pattern Recognition Letters, 11, 735–742.

    Article  MATH  Google Scholar 

  8. Ramponi, G., Strobel, N., & Yu, T. H. (1996). Nonlinear unsharp masking methods for image contrast enhancement. Journal of Electronic Imaging, 5(3), 353–366.

    Article  Google Scholar 

  9. Chen, S. D., & Ramli, A. R. (2004). Preserving brightness in histogram equalization based contrast enhancement techniques. Digital Signal Processing, 14, 413–428.

    Article  Google Scholar 

  10. Kim, Y. T. (1997). Enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics, 43(1), 1–8.

    Article  Google Scholar 

  11. Kim, J. Y., Kim, L. S., & Hwang, S. H. (2001). An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Transactions on Circuits and Systems for Video Technology, 11, 475–484.

    Article  Google Scholar 

  12. Stark, J. A. (2000). Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Transactions on Image Processing, 9, 889–896.

    Article  Google Scholar 

  13. Yu, Z., & Bajaj, C. (2004). A fast and adaptive method for image contrast enhancement. IEEE International Conference on Image Processing, 2, 1001–1004.

    Google Scholar 

  14. Jin, Y., Fayadb, L., & Laine, A. (2001). Contrast enhancement by multi-scale adaptive histogram equalization. Wavelets: Applications in Signal and Image Processing IX, 4478, 206–213.

    Google Scholar 

  15. Chen, Z. Y., Abidi, R., Page, D. L., & Abidi, M. A. (2006). Gray-level grouping (GLG): An automatic method for optimized image contrast enhancement—Part I: The basic method. IEEE Transactions on Image Processing, 15, 2290–2302.

    Article  Google Scholar 

  16. Wadud, M. A. A., Kabir, M. H., Dewan, A. A., & Chae, O. (2007). A dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53, 593–600.

    Article  Google Scholar 

  17. Demirel, H., Ozcinar, C., & Anbarjafari, G. (2010). Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition. IEEE Geoscience and Remote Sensing Letters, 7(2), 333–337.

    Article  Google Scholar 

  18. Kanojia, A., Agaian, S. S., & Panetta, K. (2004). New contrast measure for transform based image enhancement. In 2004 International TICSP workshop on spectral methods and multirate signal processing (SMMSP2004), Vienna, Austria (pp. 133–139).

  19. Starck, J. L., Murtagh, F., Candès, E. J., & Donoho, D. L. (2003). Gray and color image contrast enhancement by the curvelet transform. IEEE Transactions on Image Processing, 12, 706–717.

    Article  MathSciNet  MATH  Google Scholar 

  20. Dhnawan, A. P., Buelloni, G., & Gordon, R. (1986). Enhancement of mammographic features by optimal adaptive neighborhood image processing. IEEE Transactions on Medical Imaging, 5, 8–15.

    Article  Google Scholar 

  21. Beghdad, A., & Negrate, A. L. (1989). Contrast enhancement technique based on local detection of edges. Computer Vision Graphics and Image Processing, 46, 162–174.

    Article  Google Scholar 

  22. Dash, L., & Chatterji, B. N. (1991). Adaptive contrast enhancement and de-enhancement. Pattern Recognition, 24, 289–302.

    Article  Google Scholar 

  23. Florea, C., Vlaicu, A., Gordan, M., & Orza, B. (2009). Fuzzy intensification operator based contrast enhancement in the compressed domain. Applied Soft Computing, 9(3), 1139–1148.

    Article  Google Scholar 

  24. Pal, S. K., & King, R. (1981). Image enhancement using smoothing with fuzzy sets. IEEE Transactions on Systems Man and Cybernatics, 11(7), 494–500.

    Article  Google Scholar 

  25. Li, H., & Yang, H. S. (1989). Fast and reliable image enhancement using fuzzy relaxation technique. IEEE Transactions on Systems Man Cybernatics, 19, 1276–1281.

    Article  Google Scholar 

  26. Hanmandlu, M., Tandon, S. N., & Mir, A. H. (1997). A new fuzzy logic based image enhancement. Biomedical Sciences Instrumentation, 34, 590–595.

    Google Scholar 

  27. Hanmandlu, M., & Jha, D. (2006). An optimal fuzzy system for color image enhancement. IEEE Transactions on Image Processing, 15, 2956–2966.

    Article  Google Scholar 

  28. Paulinas, M., & Usinskas, A. (2015). A survey of genetic algorithms applications for image enhancement and segmentation. Information Technology and Control, 36(3), 278–284.

    Google Scholar 

  29. Saitoh, F. (1999). Image contrast enhancement using genetic algorithm. In Systems, man, and cybernetics, IEEE SMC’99 conference proceedings (Vol. 4, pp. 899–904).

  30. Hashemi, S., Kiani, S., Noroozi, N., & Moghaddam, M. E. (2010). An image contrast enhancement method based on genetic algorithm. Pattern Recognition Letters, 31(13), 1816–1824.

    Article  Google Scholar 

  31. Larson, E. C., & Chandler, D. M. (2010). Most apparent distortion: Full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging, 19(1), 011006.

    Article  Google Scholar 

  32. Munteanu, C., & Rosa, A. (2000). Towards automatic image enhancement using genetic algorithms. IEEE Proceedings of the Congress on Evolutionary Computation, 2, 1535–1542.

    Google Scholar 

  33. Hanmandlu, M., Jha, D., & Sharma, R. (2003). Color image enhancement by fuzzy intensification. Pattern Recognition Letters, 24, 81–87.

    Article  MATH  Google Scholar 

  34. Chaira, T., & Ray, A. K. (2009). Fuzzy image processing and applications with MATLAB. Boca Raton: CRC Press.

    MATH  Google Scholar 

  35. Gonzalez, C. R., & Woods, R. E. (2011). Digital image processing. Noida: Dorling Kindersley (India) Pvt Ltd Publications.

    Google Scholar 

  36. Al-Najjar, Y. A. Y., & Soong, D. C. (2012). Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI. International Journal of Science and Engineering Research, 3, 1–5.

    Google Scholar 

  37. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600–612.

    Article  Google Scholar 

  38. Zhang, L., Zhang, L., Mou, Z., & Zhang, D. (2011). FSIM: A feature similarity index for image quality assessment. IEEE Transactions Image Processing, 20, 2078–2386.

    Article  MathSciNet  Google Scholar 

  39. Panse, V. G., & Sukhatme, P. V. (1985). Statistical methods for agricultural workers. New Delhi, India, ICAR.

  40. Surya Prabha, D., & Satheesh Kumar, J. (2016). Performance evaluation of image segmentation using objective methods. Indian Journal of Science and Technology, 9(8), 1–8.

    Article  Google Scholar 

  41. Surya Prabha, D., & Satheesh Kumar, J. (2015). Enhanced edge detection method using unconstrained non-linear optimization technique. International Journal of Applied Engineering Research, 9(20), 4697–4702.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Satheesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surya Prabha, D., Satheesh Kumar, J. An Efficient Image Contrast Enhancement Algorithm Using Genetic Algorithm and Fuzzy Intensification Operator. Wireless Pers Commun 93, 223–244 (2017). https://doi.org/10.1007/s11277-016-3536-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3536-x

Keywords

Navigation