Advertisement

Wireless Personal Communications

, Volume 90, Issue 3, pp 1355–1367 | Cite as

Frequency-Selective Evaluation of Personal Exposure to Electromagnetic Fields of Wireless Communications and Broadcast Transmitters

  • Mimoza Ibrani
  • Enver HamitiEmail author
  • Luan Ahma
  • Doruntinë Berisha
Article

Abstract

We performed a frequency-selective measurement campaign using personal exposure meters with a three-axis E-field probe to assess the electric field strength and power density of wireless communication systems and broadcast transmitters in Kosovo. Mean exposure levels were compared among different microenvironments—outdoor urban, living room, office and bedroom microenvironments—in different geographical locations and different exposure time periods. Furthermore, typical exposure levels in European countries and Kosovo were compared. Measurement post-processing results show that the highest values of the mean power density in an outdoor urban microenvironment were 0.173 mW/m2 for Wi-Fi 5G, 0.137 mW/m2 for GSM 900 uplink, 0.128 mW/m2 for GSM 1800 uplink and 0.112 mW/m2 for Wi-Fi 2G. The maximal recorded value of the total electric field strength was 10.44 V/m. The highest exposure levels per frequency band in the living room were 0.042 mW/m2 for FM, 0.023 mW/m2 for GSM 900 uplink and 0.023 mW/m2 for GSM 900 downlink and Wi-Fi 2G. In office environments, the mean power density for 14 predefined frequency bands in the range 88–5850 MHz was 0.227 mW/m2 in total. The highest total electric field strength for office microenvironments was 5.439 V/m. Residential homes were mainly dominated by the GSM bands (GSM 900 downlink, 54 %; GSM 1800 downlink, 36 %). For the frequency bands FM, TETRA and TV4&5, the exposure was much higher on upper residential floors.

Keywords

Wireless communications Power density Electric field Personal exposure Wi-Fi GSM 

References

  1. 1.
    Kyoseva, T., Poulkov, V., Mihaylov, M., & Mihovska, A. (2014). Disruptive innovations as a driving force for the change of wireless telecommunication infrastructures. Wireless Personal Communications, 78(3), 1683–1697.CrossRefGoogle Scholar
  2. 2.
    Foster, K. R. (2013). A world awash with wireless devices: Radio-frequency exposure issues. Microwave Magazine, IEEE, 14(2), 73–84.CrossRefGoogle Scholar
  3. 3.
    Bolte, J. F., & Eikelboom, T. (2012). Personal radiofrequency electromagnetic field measurements in the Netherlands: Exposure level and variability for everyday activities, times of day and types of area. Environment International, 48, 133–142.CrossRefGoogle Scholar
  4. 4.
    Ibrani, M., Ahma, L., & Hamiti, E. (2014). Assessment of the exposure of children to electromagnetic fields from wireless communication devices in home environments. Communications, IET, 8(12), 2222–2228.CrossRefGoogle Scholar
  5. 5.
    International Commission on Non-ionizing Radiation Protection (ICNIRP). (1998). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up 300 GHz). Health Physics, 74(4), 494–522.Google Scholar
  6. 6.
    Urbinello, D., Joseph, W., Huss, A., Verloock, L., Beekhuizen, J., Vermeulen, R., et al. (2014). Radio-frequency electromagnetic field (RF-EMF) exposure levels in different European outdoor urban environments in comparison with regulatory limits. Environment International, 68, 49–54.CrossRefGoogle Scholar
  7. 7.
    Kuhn, S., & Kuster, N. (2010). Evaluation of measurement techniques to show compliance with RF safety limits in heterogeneous field distributions. IEEE Transactions on Electromagnetic Compatibility, 52(4), 820–828.CrossRefGoogle Scholar
  8. 8.
    Mann, S. (2010). Assessing personal exposures to environmental radiofrequency electromagnetic fields. Comptes Rendus Physique, 11(9), 541–555.CrossRefGoogle Scholar
  9. 9.
    Breckenkamp, J., Blettner, M., Schüz, J., Bornkessel, C., Schmiedel, S., Schlehofer, B., & Berg-Beckhoff, G. (2012). Residential characteristics and radiofrequency electromagnetic field exposures from bedroom measurements in Germany. Radiation and Environmental Biophysics, 51(1), 85–92.CrossRefGoogle Scholar
  10. 10.
    Markakis, I., & Samaras, T. (2013). Radiofrequency exposure in Greek indoor environments. Health Physics, 104(3), 293–301.CrossRefGoogle Scholar
  11. 11.
    Frei, P., Mohler, E., Neubauer, G., Theis, G., Bürgi, A., Fröhlich, J., et al. (2009). Temporal and spatial variability of personal exposure to radio frequency electromagnetic fields. Environmental Research, 109(6), 779–785.CrossRefGoogle Scholar
  12. 12.
    Thuróczy, G., Molnár, F., Jánossy, G., Nagy, N., Kubinyi, G., Bakos, J., & Szabó, J. (2008). Personal RF exposimetry in urban area. Annals of Telecommunications-Annales des Télécommunications, 63(1–2), 87–96.CrossRefGoogle Scholar
  13. 13.
    Joseph, W., Vermeeren, G., Verloock, L., Heredia, M. M., & Martens, L. (2008). Characterization of personal RF electromagnetic field exposure and actual absorption for the general public. Health Physics, 95(3), 317–330.CrossRefGoogle Scholar
  14. 14.
    Joseph, W., Frei, P., Roösli, M., Thuróczy, G., Gajsek, P., Trcek, T., et al. (2010). Comparison of personal radio frequency electromagnetic field exposure in different urban areas across Europe. Environmental Research, 110(7), 658–663.CrossRefGoogle Scholar
  15. 15.
    Kwak, S. I., Kwon, J. H., & Yoon, Y. J. (2014). Design of the E-field probe for mobile communication bands in the personal exposure meter. In Consumer electronics (ISCE 2014), The 18th IEEE International Symposium on.Google Scholar
  16. 16.
    Thielens, A., Vanveerdeghem, P., Agneessens, S., Vermeeren, G., Rogier, H., Martens, L., & Joseph, W. (2014). Whole-body averaged specific absorption rate estimation using a personal, distributed exposimeter. Antennas and Wireless Propagation Letters, IEEE. doi: 10.1109/LAWP.2014.2368597.Google Scholar
  17. 17.
    de Miguel-Bilbao, S., García, J., Ramos, V., & Blas, J. (2014). Assessment of human body influence on exposure measurements of electric field in indoor enclosures. Bioelectromagnetics, 36(2), 118–132.CrossRefGoogle Scholar
  18. 18.
    Knafl, U., Lehmann, H., & Riederer, M. (2008). Electromagnetic field measurements using personal exposimeters. Bioelectromagnetics, 29(2), 160–162.CrossRefGoogle Scholar
  19. 19.
    Neubauer, G., Cecil, S., Giczi, W., Petric, B., Preiner, P., Fröhlich, J., et al. (2008). Evaluation of the correlation between RF dosimeter reading and real human exposure. Austrian Research Centers GmbH—ARC.Google Scholar
  20. 20.
    Bolte, J. F., van der Zande, G., & Kamer, J. (2011). Calibration and uncertainties in personal exposure measurements of radiofrequency electromagnetic fields. Bioelectromagnetics, 32(8), 652–663.CrossRefGoogle Scholar
  21. 21.
    Röösli, M., Frei, P., Bolte, J., Neubauer, G., Cardis, E., Feychting, M., et al. (2010). Conduct of a personal radiofrequency electromagnetic field measurement study: Proposed study protocol. Environmental Health, 9(1), 23.CrossRefGoogle Scholar
  22. 22.
    Thomas, S., Kühnlein, A., Heinrich, S., Praml, G., von Kries, R., & Radon, K. (2008). Exposure to mobile telecommunication networks assessed using personal dosimetry and well-being in children and adolescents: The German MobilEe-study. Environmental Health, 7(1), 55.CrossRefGoogle Scholar
  23. 23.
    Heinrich, S., Thomas, S., Heumann, C., von Kries, R., & Radon, K. (2011). The impact of exposure to radio frequency electromagnetic fields on chronic well-being in young people: A cross-sectional study based on personal dosimetry. Environment International, 37(1), 26–30.CrossRefGoogle Scholar
  24. 24.
    Joseph, W., Frei, P., Röösli, M., Vermeeren, G., Bolte, J., Thuróczy, G., et al. (2012). Between-country comparison of whole-body SAR from personal exposure data in Urban areas. Bioelectromagnetics, 33(8), 682–694.CrossRefGoogle Scholar
  25. 25.
    Verstrepen, L., Joseph, W., Tanghe, E., Pareit, D., Naudts, D., Keymeulen, J., et al. (2012). Models for wireless data communications in indoor train environment. Wireless Personal Communications, 67(4), 741–760.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mimoza Ibrani
    • 1
  • Enver Hamiti
    • 1
    Email author
  • Luan Ahma
    • 1
  • Doruntinë Berisha
    • 1
  1. 1.Faculty of Electrical and Computer EngineeringUniversity of PrishtinaPrishtinaRepublic of Kosovo

Personalised recommendations