Wireless Personal Communications

, Volume 89, Issue 4, pp 1371–1390 | Cite as

SIMSec: A Key Exchange Protocol Between SIM Card and Service Provider

  • Kerem Ok
  • Vedat Coskun
  • Siddik Binboga Yarman
  • Cem Cevikbas
  • Busra Ozdenizci
Article
  • 209 Downloads

Abstract

Mobile technology is so popular and overdosed adoption is inevitable in today’s world. As the mobile technologies have advanced, Service Providers (SP) have offered services via Smartphones and some of them required secure data communication between the Subscriber Identity Module (SIM) cards on Smartphones and the servers of SP. The latest SIM cards comply with recent specifications including secure domain generation, mobile signatures, pre-installed encryption keys, and other useful security services. Nevertheless, un-keyed SIM cards do not satisfy such requirements, thus end-to-end encryption between the SIM card and SP cannot be provided. In this paper, we provide a key exchange protocol, which creates a symmetric key through the collaborative work of the SIM card and the SP server. After a successful protocol performance, the SIM card and SP can perform end-to-end data encryption. After defining the protocol, we also discuss the security issues and provide a formal security analysis of the protocol using the Casper/FDR tool.

Keywords

Smart card SIM card Service provider End-to-end security Key exchange protocol 

References

  1. 1.
    Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., & Ferguson, N. (1999). The Twofish encryption algorithm: A 128-bit block cipher. New York: Wiley.MATHGoogle Scholar
  2. 2.
    Daemen, J., & Rijmen, V. (2002). The design of Rijndael: AES-the advanced encryption standard. Berlin: Springer.CrossRefMATHGoogle Scholar
  3. 3.
    Schneier, B. (1994). Description of a new variable-length key, 64-bit block cipher (Blowfish). In R. Anderson (Ed.),  Fast software encryption (pp. 191–204). Berlin: Springer.Google Scholar
  4. 4.
    Stallings, W. (2002). The advanced encryption standard. Cryptologia, 26(3), 165–188.CrossRefGoogle Scholar
  5. 5.
    Coppersmith, D. (1994). The Data Encryption Standard (DES) and its strength against attacks. IBM Journal of Research and Development, 38(3), 243–250.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Barker, W. C., & Barker, E. (2012). NIST Special Publication 800-67 Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher Revision 1.Google Scholar
  7. 7.
    Perkov, L., Klisura, A., & Pavkovic, N. (2011). In 34th International convention on recent advances in GSM insecurities (pp. 1502–1506).Google Scholar
  8. 8.
    ISO/IEC. (2006). ISO/IEC 7812-1:2006. Identification Cards—Identification of issuers—Part 1: Numbering system (3rd ed.).Google Scholar
  9. 9.
    Smart Card Alliance. Smart card standards and specifications. http://www.smartcardalliance.org/smart-cards-intro-standards/. Accessed 20 April 2016.
  10. 10.
    GlobalPlatform. GlobalPlatform official web page. http://www.globalplatform.org/. Accessed 20 April 2016.
  11. 11.
    Sauveron, D. (2009). Multiapplication smart card: Towards an open smart card? Information Security Technical Report, 14(2), 70–78.CrossRefGoogle Scholar
  12. 12.
    GlobalPlatform. GlobalPlatform Card Specification v2.2.1. http://www.globalplatform.org/specificationscard.asp. Accessed 20 April 2016.
  13. 13.
    Coskun, V., Ozdenizci, B., & Ok, K. (2015). The survey on near field communication (NFC) technology. Sensors, 15(6), 13348–13405.CrossRefGoogle Scholar
  14. 14.
    Coskun, V., Ok, K., & Ozdenizci, B. (2011). Near field communication (NFC): From theory to practice. Wiley. ISBN: 978-1119971092.Google Scholar
  15. 15.
    Lu, R., & Cao, Z. (2007). Simple three-party key exchange protocol. Computers and Security, 26(1), 94–97.CrossRefGoogle Scholar
  16. 16.
    Diffie, W., & Hellman, M. E. (1976). New directions in cryptography. IEEE Transactions on Information Theory, 22(6), 644–654.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Camtepe, S. A. (2013). Complexity of increasing the secure connectivity in wireless Ad Hoc Networks. In C. Boyd & L. Simpson (Eds.), Information Security and Privacy (pp. 363–378). Berlin: Springer.CrossRefGoogle Scholar
  18. 18.
    Boyko, V., MacKenzie, P., & Patel, S. (2000). Provably secure password-authenticated key exchange using Diffie–Hellman. In B. Preneel (Ed.), Advances in cryptology—Eurocrypt 2000 (pp. 156–171). Berlin: Springer.CrossRefGoogle Scholar
  19. 19.
    Abdalla, M., & Pointcheval, D. (2005). Simple password-based encrypted key exchange protocols. In A. Menezes (Ed.), Topics in cryptology–CT-RSA 2005 (pp. 191–208).Google Scholar
  20. 20.
    International Telecommunication Union. (2007). ITU-T Recommendation X.1035: Password authenticated key exchange (PAK) Protocol. http://www.itu.int/rec/T-REC-X.1035/en.
  21. 21.
    Shamir, A. (1985). Identity-based cryptosystems and signature schemes. In G. R. Blakley & D. Chaum (Eds.), Advances in cryptology (pp. 47–53). Berlin: Springer.CrossRefGoogle Scholar
  22. 22.
    Wu, T. Y., & Tseng, Y. M. (2009). An ID-based mutual authentication and key exchange protocol for low-power mobile devices. The Computer Journal,. doi:10.1093/comjnl/bxp083.Google Scholar
  23. 23.
    Xie, M., & Wang, L. (2012). One-round identity-based key exchange with Perfect Forward Security. Information Processing Letters, 112(14), 587–591.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Ok, K., Coskun, V., Aydin, M. N., & Ozdenizci, B. (2010). Current benefits and future directions of NFC services. In 2010 International conference on education and management technology (ICEMT), (pp. 334–338).Google Scholar
  25. 25.
    Ozdenizci, B., Coskun, V., & Ok, K. (2015). NFC internal: An indoor navigation system. Sensors, 15(4), 7571–7595.CrossRefGoogle Scholar
  26. 26.
    Ozdenizci, B., Ok, K., & Coskun, V. (2013). NFC loyal for enhancing loyalty services through near field communication. Wireless Personal Communications, 68(4), 1923–1942.CrossRefGoogle Scholar
  27. 27.
    Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.CrossRefMATHGoogle Scholar
  28. 28.
    Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S., et al. (2009). Building the internet of things using RFID: The RFID ecosystem experience. Internet Computing, 13(3), 48–55.CrossRefGoogle Scholar
  29. 29.
    Karnouskos, S. (2004). Mobile payment: A journey through existing procedures and standardization initiatives. Communications Surveys and Tutorials, 6(4), 44–66.CrossRefGoogle Scholar
  30. 30.
    Coskun, V., Ozdenizci, B., Ok, K., Alsadi, M., & Soylemezgiller, F. (2013). Design and development of NFC enabled loyalty system. In Proceedings of the 6th international conference of advanced computer systems and networks: Design and application, Lviv, Ukraine (pp. 16–18).Google Scholar
  31. 31.
    Song, R. (2010). Advanced smart card based password authentication protocol. Computer Standards and Interfaces, 32(5), 321–325.CrossRefGoogle Scholar
  32. 32.
    Li, C. T., Lee, C. C., Liu, C. J., & Lee, C. W. (2011). A robust remote user authentication scheme against smart card security breach. In Y. Li (Ed.),  Data and applications security and privacy XXV (pp. 231–238). Berlin: Springer.Google Scholar
  33. 33.
    Badra, M., & Urien, P. (2004). Toward SSL integration in SIM SmartCards. In Wireless communications and networking conference, 2004. WCNC. 2004 IEEE (Vol. 2, pp. 889–893).Google Scholar
  34. 34.
    Rongyu, H., Guolei, Z., Chaowen, C., Hui, X., Xi, Q., & Zheng, Q. (2009). A PK-SIM card based end-to-end security framework for SMS. Computer Standards and Interfaces, 31(4), 629–641.CrossRefGoogle Scholar
  35. 35.
    Li, Y., Chen, M., & Nie, J. (2011). Mobile commerce security model construction based on sms. In Wireless communications, networking and mobile computing (WiCOM), 7th International Conference on 2011 (pp. 1–3).Google Scholar
  36. 36.
    Markantonakis, K., & Mayes, K. (2005). A Secure Channel protocol for multi-application smart cards based on public key cryptography, Communications and Multimedia Security, (Vol. 175, pp. 79–95). US: Springer.Google Scholar
  37. 37.
    Ok, K., Coskun, V., & Cevikbas, R. C. (2014). Challenges and risks for a secure communication between a smartcard and a SP through cellular network. International Journal of Advances in Computer Networks and Its Security, 4(4), 26–30.Google Scholar
  38. 38.
    Ok, K., Coskun, V., Cevikbas, C., & Ozdenizci, B. (2015). Design of a key exchange protocol between SIM card and service provider. In 2015 23rd telecommunications forum telfor (TELFOR)  (pp. 281–284). IEEE.Google Scholar
  39. 39.
    3rd Generation Partnership Project 2 / 3GPP2. (2007). X.S0028-100-0 cdma2000 Packet data services: Wireless local area network (WLAN) interworking—Access to internet. http://www.3gpp2.org/public_html/specs/X.S0028-100-0_v1.0_070405.pdf. Last Access Date 20 April 2016.
  40. 40.
    3rd Generation Partnership Project 2 / 3GPP2. (2010). Over-the-air service provisioning of mobile stations in spread spectrum systems. http://www.3gpp2.org/public_html/specs/C.S0016-D%20v1.0_OTASP.pdf. Last Access Date 20 April 2016.
  41. 41.
    Sterckx, M., Gierlichs, B., Preneel, B., & Verbauwhede, I. (2009). Efficient implementation of anonymous credentials on Java Card smart cards. In First IEEE international workshop on information forensics and security, (pp. 106–110).Google Scholar
  42. 42.
    Borst, J., Preneel, B., & Rijmen, V. (2001). Cryptography on smart cards. Computer Networks, 36(4), 423–435.CrossRefGoogle Scholar
  43. 43.
    Barker, E., Barker, W., Burr, W., Polk, W., & Smid, M. (2006). Recommendation for key management-part 1: General (Revision 3). NIST special publication.Google Scholar
  44. 44.
    Lowe, G. Casper: A compiler for the analysis of security protocols. http://www.cs.ox.ac.uk/gavin.lowe/Security/Casper/. Accessed 20 April 2016.
  45. 45.
    Canetti, R., Goldreich, O., & Halevi, S. (2004). The random oracle methodology, revisited. Journal of the ACM (JACM), 51(4), 557–594.MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Lamberger, M., & Mendel, F. (2011). Higher-order differential attack on reduced SHA-256. IACR Cryptology ePrint Archive, 2011, 37.Google Scholar
  47. 47.
    Blake-Wilson, S., Johnson, D., & Menezes, A. (1997). Key agreement protocols and their security analysis (pp. 30–45). Berlin: Springer.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kerem Ok
    • 1
  • Vedat Coskun
    • 1
  • Siddik Binboga Yarman
    • 2
  • Cem Cevikbas
    • 3
  • Busra Ozdenizci
    • 1
  1. 1.Information Technologies DepartmentIsik UniversityIstanbulTurkey
  2. 2.Electrical and Electronics Engineering DepartmentIstanbul UniversityIstanbulTurkey
  3. 3.Turkcell TechnologyIstanbulTurkey

Personalised recommendations