Advertisement

Wireless Personal Communications

, Volume 89, Issue 4, pp 1103–1121 | Cite as

Unequal Luby Transform Based on Block Weight Shift (ULT-BWS) for Error Resilient Video Transmission

  • Hojin Ha
  • Changhoon YimEmail author
Article
  • 110 Downloads

Abstract

In this paper, we propose an unequal Luby transform (LT) based on block weight shift (ULT-BWS) method as an unequal forward error correction method to minimize video distortion over packet-lossy networks. First, we consider unequal amount of error propagation effects from packet loss in hierarchical prediction structure to give unequal property in an LT codes. For robust video transmission over various channel status, the ULT-BWS method assigns an efficient amount of protection for frame blocks with different error propagation weights by controlling the range of more important blocks in a group of pictures. Simulation results demonstrate that the proposed ULT-BWS method gives robust performance and significantly improved video quality, compared with the conventional ULT schemes.

Keywords

Forward error correction Unequal loss protection Luby transform Error propagation H.264/AVC 

References

  1. 1.
    Ahmed, T., Hehaoua, A., Boutaba, R., & Iraqi, Y. (2005). Adaptive packet video streaming over IP networks. IEEE Journal on Selected Areas in Communications, 23(2), 385–405.CrossRefGoogle Scholar
  2. 2.
    Stuhlmuller, K., Farber, N., Link, M., & Girod, B. (2000). Analysis of video transmission over lossy channels. IEEE Journal on Selected Areas in Communications, 18(6), 1012–1032.CrossRefGoogle Scholar
  3. 3.
    Cavusoglu, B., Schonfeld, D., Ansari, R., & Peepak, D. (2005). Real-time low complexity adaptive approach for enhanced OoS and error resilience in MPEG-2 video transport over RTP networks. IEEE Transactions on Circuits and Systems for Video Technology, 15(11), 1604–1614.CrossRefGoogle Scholar
  4. 4.
    Shi, Y., Wu, C., & du, J. (2007). A novel unequal loss protection approach for salable video streaming over wireless networks. IEEE Transactions on Consumer Electronics, 53(2), 363–368.CrossRefGoogle Scholar
  5. 5.
    Wang, Y., Fang, T., Chau, L., & Yap, K. (2007). Two-dimensional channel coding scheme for MCTF-based scalable video coding. IEEE Transactions on Multimedia, 9(1), 37–45.CrossRefGoogle Scholar
  6. 6.
    Ha, H., & Yim, C. (2008). Layer-weighted unequal error protection for scalable video coding extension of H.264/AVC. IEEE Transactions on Consumer Electronics, 54(2), 736–744.CrossRefGoogle Scholar
  7. 7.
    Yu, X., Modestino, J. W., Kurceren, R., & Chan, Y. S. (2008). A model-based approach to evaluation of the efficacy of FEC coding in combating network packet losses. IEEE/ACM Transactions on Networking, 16(3), 628–641.CrossRefGoogle Scholar
  8. 8.
    Jiaying, L., Yongjin, C., Zongming, G., & Kuo, J. (2010). Bit allocation for spatial scalability coding of H.264/SVC with dependent rate-distortion analysis. IEEE Transactions on Circuits and Systems for Video Technology, 20(7), 967–981.CrossRefGoogle Scholar
  9. 9.
    Ming-Fong, T., Naveen, C., & Chilamkurti, N. (2011). An adaptive packet and block length forward error correction for video streaming over wireless networks. Wireless Personal Communications, 56(3), 435–446.CrossRefGoogle Scholar
  10. 10.
    Yongkai, H., El-Hajjar, M., Maunder, R. G., & Hanzo, L. (2014). Layered wireless video relying on minimum-distortion inter-layer FEC coding. IEEE Transactions on Multimedia, 16(3), 697–710.CrossRefGoogle Scholar
  11. 11.
    Jiyan, W., Bo, C., Chau, Y., Yanlei, S., & Junliang, C. (2015). Distortion-aware concurrent multipath transfer for mobile video streaming in heterogeneous wireless networks. IEEE Transactions on Mobile Computing, 14(4), 688–701.CrossRefGoogle Scholar
  12. 12.
    Luby, M. (2002). LT-codes. In Proceedings of 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 271–280.Google Scholar
  13. 13.
    Shokrollahi, A. (2006). Raptor-codes. IEEE Transactions on Information Theory, 52(6), 2551–2567.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Luby, M., Shokrollahi, A., Watson, M., & Stockhammer, T. (2007). Raptor forward error correction for object delivery. Network Working Group, RFC5053.Google Scholar
  15. 15.
    Rahnavard, N., Vellambi, B. N., & Fekri, F. (2007). Rateless codes with unequal error protection property. IEEE Transactions on Information Theory, 53(4), 1521–1532.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhang, D., Liang, J., & Singh, I. (2013). Fast transmission distortion estimation and adaptive error protection for H.264/AVC-based embedded video conferencing systems. Signal Processing: Image Communication, 28(5), 417–429.Google Scholar
  17. 17.
    Vukobratovic, D., Stankovic, V., Sejdinovic, D., Stankovic, L., & Xiong, Z. (2009). Scalable video multicast using expanding window fountain codes. IEEE Transactions on Multimedia, 11(6), 1094–1104.CrossRefGoogle Scholar
  18. 18.
    Hamzaoui, R., Stankovic, V., & Xiong, Z. (2005). Optimized error protection of scalable image bitstream. IEEE Signal Processing Magazine, 22(6), 91–107.CrossRefGoogle Scholar
  19. 19.
    Namjoo, E., Aghagolzadeh, A., & Museviniya, J. (2011). Robust transmission of scalable video stream using modified LT codes. Computers and Electrical Engineering, 37(5), 768–781.CrossRefGoogle Scholar
  20. 20.
    Namjoo, E., Aghagolzadeh, A., & Museviniya, J. (2013). A new rateless code with unequal error protection property. Computers and Electrical Engineering, 39(7), 1980–1992.CrossRefGoogle Scholar
  21. 21.
    Wang, Y., & Rongke, L. (2015). Enhanced unequal error protection coding scheme of Luby transform codes. IET Communications, 9(1), 33–41.CrossRefGoogle Scholar
  22. 22.
    Congchong, R., Liuguo, Y., Jianhua, L., & Chang, W. C. (2007). UEP video trans-mission based on dynamic resource allocation in MIMO OFDM system. IEEE Wireless Communications and Networking Conference. doi: 10.1109/WCNC.2007.63.Google Scholar
  23. 23.
    H.264/AVC Software Coordination. http://iphome.hhi.de/suehring/tml/index.htm.
  24. 24.
    Zorzi, M., Rao, R. R., & Milstein, L. B. (1995). On the accuracy of a first-order Markov model for data transmission on fading channels. Fourth IEEE International Conference on Universal Personal Communications, 211–215.Google Scholar
  25. 25.
    NS-3 Network Simulator. http://www.nsnam.org/.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Information, Communication and Broadcasting EngineeringHalla UniversityWonjuKorea
  2. 2.Department of Internet and Multimedia EngineeringKonkuk UniversitySeoulKorea

Personalised recommendations