Wireless Personal Communications

, Volume 88, Issue 1, pp 63–77 | Cite as

Data Driven Wireless Network Design: A Multi-level Modeling Approach

  • Carolina FortunaEmail author
  • Eli De Poorter
  • Primož Škraba
  • Ingrid Moerman


Wireless network technology keeps improving by solving problems detected in current systems and anticipating requirements for future systems. One of the possible approaches to help advancing wireless technology is to develop methods that help researchers understand the less desired behaviors that may occur in a real-world system. One such method is data driven multi-level analysis that uses the monitoring data collected from real-world networks to provide detailed insight, at several levels and/or scales, into the system behavior. This paper discusses data driven multi-level analysis, provides a proof of concept on how it can be applied and identifies challenges. The contributions of this paper are (1) the use of data driven multi-level analysis for understanding the behaviour of wireless networks and (2) the identification of open challenges and directions for future research.


Wireless networks Data driven research Data science Multi-level modeling 



We would like to acknowledge Tomaz Šolc for sharing the data collected by the LOG-a-TEC wireless testbed monitoring system. This work was partly funded by the European Commission H2020 program under Grant Agreement Number 688116 (eWINE project), FP7 Grant Agreement Numbers 318493 (TOPOSYS project) and 612329 (Proasense project) and the IWT SBO SAMURAI project.


  1. 1.
    Ammari, H. M., & Das, S. K. (2008). Integrated coverage and connectivity in wireless sensor networks: A two-dimensional percolation problem. IEEE Transactions on Computers, 57(10), 1423–1434.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baccour, N., Koubaa, A., Mottola, L., Zuniga, M. A., Youssef, H., Boano, C. A., et al. (2012). Radio link quality estimation in wireless sensor networks: A survey. ACM Transactions on Sensor Networks (TOSN), 8(4), 34.CrossRefGoogle Scholar
  3. 3.
    Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boano, C. A., Zúñiga, M., Brown, J., Roedig, U., Keppitiyagama, C., & Römer, K. (2014). Templab: A testbed infrastructure to study the impact of temperature on wireless sensor networks. In Proceedings of the 13th international symposium on Information processing in sensor networks (pp. 95–106). New York: IEEE Press.Google Scholar
  5. 5.
    Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., & Leskovec, J. (2014). Can cascades be predicted? In Proceedings of the 23rd international conference on world wide web, (pp. 925–936). International World Wide Web Conference Steering Committee.Google Scholar
  6. 6.
    Dhar, V. (2013). Data science and prediction. Communications of the ACM, 56(12), 64–73.CrossRefGoogle Scholar
  7. 7.
    Dousse, O., Franceschetti, M., Macris, N., Meester, R., & Thiran, P. (2006). Percolation in the signal to interference ratio graph. Journal of Applied Probability, 43(2), 552–562.Google Scholar
  8. 8.
    Dousse, O., Franceschetti, M., & Thiran, P. (2006). On the throughput scaling of wireless relay networks. IEEE Transactions on Information Theory, 52(6), 2756–2761.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Franceschetti, M., & Meester, R. (2008). Random networks for communication: From statistical physics to information systems (Vol. 24). Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  10. 10.
    Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., & Razafindralambo, T. (2011). A survey on facilities for experimental internet of things research. IEEE on Communications Magazine, 49(11), 58–67.CrossRefGoogle Scholar
  11. 11.
    González, M. C., & Barabási, A. L. (2007). Complex networks: From data to models. Nature Physics, 3(4), 224–225.CrossRefGoogle Scholar
  12. 12.
    Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241–254.CrossRefGoogle Scholar
  13. 13.
    Kawadia, V., & Kumar, P. R. (2005). A cautionary perspective on cross-layer design. IEEE on Wireless Communications, 12(1), 3–11.CrossRefGoogle Scholar
  14. 14.
    Klösgen, W., & Zytkow, J.M. (2002). The knowledge discovery process. In W. Klösgen & J. Zytkow (Eds.), Handbook of data mining and knowledge discovery, (pp. 10–21). Oxford: Oxford University Press, Inc.Google Scholar
  15. 15.
    Lakkaraju, H., McAuley, J. J., & Leskovec, J. (2013). What’s in a name? understanding the interplay between titles, content, and communities in social media. In Proceedings of the 7th International AAAI Conference on Weblogs and Social Media, Cambridge, Massachusetts, USA, July 8–11. Palo Alto, California: The AAAI Press.Google Scholar
  16. 16.
    Liu, T., & Cerpa, A. E. (2011) Foresee (4c): Wireless link prediction using link features. In 2011 10th International Conference on Information Processing in Sensor Networks (IPSN), (pp. 294–305). IEEE.Google Scholar
  17. 17.
    Liu, T., & Cerpa, A. E. (2014). Temporal adaptive link quality prediction with online learning. ACM Transactions on Sensor Networks, 10(3), 1–41. doi: 10.1145/2594766.Google Scholar
  18. 18.
    Mehari, M. T., De Poorter, E., Couckuyt, I., Deschrijver, D., Vanhie-Van Gerwen, J., Pareit, D., et al. (2015). Efficient global optimization of multi-parameter network problems on wireless testbeds. Ad Hoc Networks, 29, 15–31.CrossRefGoogle Scholar
  19. 19.
    Penrose, M. D. (1995). Single linkage clustering and continuum percolation. Journal of Multivariate Analysis, 53(1), 94–109.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ren, W., Zhao, Q., & Swami, A. (2014). Temporal traffic dynamics improve the connectivity of ad hoc cognitive radio networks. IEEE/ACM Transactions on Networking (TON), 22(1), 124–136.CrossRefGoogle Scholar
  21. 21.
    Schiffman, S. S., Reynolds, M. L., Young, F. W., & Carroll, J. D. (1981). Introduction to multidimensional scaling: Theory, methods, and applications. New York: Academic Press.zbMATHGoogle Scholar
  22. 22.
    Šolc, T., Fortuna, C., & Mohorčič, M. (2015) Low-cost testbed development and its applications in cognitive radio prototyping. In M.-G. Di Benedetto, A. Fabio Cattoni, J. Fiorina, F. Bader, & L. De Nardis (Eds.), Cognitive radio and networking for heterogeneous wireless networks, (pp. 361–405). Berlin: Springer.Google Scholar
  23. 23.
    Takens, F. (1981). Detecting strange attractors in turbulence. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  24. 24.
    Thomas, R. W., Friend, D. H., DaSilva, L., Mackenzie, A. B., et al. (2006). Cognitive networks: Adaptation and learning to achieve end-to-end performance objectives. IEEE on Communications Magazine, 44(12), 51–57.CrossRefGoogle Scholar
  25. 25.
    Tukey, J. W. (1977). Exploratory data analysis. Addison Wesley series in behavioral science: quantitative methods. MA, United States: Addison Wesley.Google Scholar
  26. 26.
    Woo, A., Tong, T., & Culler, D. (2003) Taming the underlying challenges of reliable multihop routing in sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems, (pp. 14–27). New York: ACM.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Carolina Fortuna
    • 1
    Email author
  • Eli De Poorter
    • 2
  • Primož Škraba
    • 1
  • Ingrid Moerman
    • 2
  1. 1.Jozef Stefan InstituteLjubljanaSlovenia
  2. 2.Ghent University - iMindsGhentBelgium

Personalised recommendations