Cryptanalysis of a High-Definition Image Encryption Based on AES Modification

Abstract

Wadi and Zainal recently proposed a high definition image encryption algorithm based on a modified AES-128 block cipher in (Wirel Pers Commun 79(2):811–829, 2014). In this paper, we show that the core component of their image encryption algorithm, a modified AES-128 cipher, is insecure against impossible differential attack. The proposed impossible differential attack on the full rounds of the modified AES-128 cipher has a time complexity of around \(2^{88.74}\) encryptions with \(2^{114.06}\) chosen plaintexts and \(2^{99}\) bytes of memory, in contrast to the expected security of \(2^{128}\). The existence of such an attack disproves the claims made by the designers that their modified AES-128 cipher improves the security of the AES cipher and that it can subsequently be used to construct a secure image encryption scheme. The root cause of this attack, some other issues with the modified AES cipher and possible solutions are described to serve as important remarks in designing a secure image encryption scheme.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Pareek, N. K., Patidar, V., & Sud, K. K. (2003). Discrete chaotic cryptography using external key. Physics Letters A, 309(1–2), 75–82.

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Pareek, N. K., Patidar, V., & Sud, K. K. (2006). Image encryption using chaotic logistic map. Image and Vision Computing, 24(9), 926–934.

    Article  Google Scholar 

  3. 3.

    Patidar, V., Pareek, N. K., Purohit, G., & Sud, K. K. (2010). Modified substitution-diffusion image cipher using chaotic standard and logistic maps. Communications in Nonlinear Science and Numerical Simulation, 15(10), 2755–2765.

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Norouzi, B., Mirzakuchaki, S., Seyedzadeh, S. M., & Mosavi, M. R. (2014). A simple, sensitive and secure image encryption algorithm based on hyper-chaotic system with only one round diffusion process. Multimedia Tools and Applications, 71(3), 1469–1497.

    Article  Google Scholar 

  5. 5.

    Wang, X., & Guo, K. (2014). A new image alternate encryption algorithm based on chaotic map. Nonlinear Dynamics, 76(4), 1943–1950.

    Article  Google Scholar 

  6. 6.

    Ahmad, J., & Hwang, S. O. (2015). A secure image encryption scheme based on chaotic maps and affine transformation. Multimedia Tools and Applications. doi:10.1007/s11042-015-2973-y.

    Google Scholar 

  7. 7.

    Khan, M. (2015). A novel image encryption scheme based on multiple chaotic S-boxes. Nonlinear Dynamics, 82(1), 527–533.

    MathSciNet  Article  Google Scholar 

  8. 8.

    Daemen, J. & Rijmen, V. (2000). Rijndael for AES. Proceedings of the AES Candidate Conference, 2000, 343–348.

    Google Scholar 

  9. 9.

    Shahid, Z., Chaumont, M., & Puech, W. (2011). Fast protection of H.264/AVC by selective encryption of CAVLC and CABAC for I and P frames. IEEE Transactions on Circuits and Systems for Video Technology, 21(5), 565–576.

    Article  Google Scholar 

  10. 10.

    Pinto, M., Puech, W., & Subsol, G. (2013). Protection of JPEG compressed e-comics by selective encryption. Proceedings of the ICIP, 2013, 4588–4592.

    Google Scholar 

  11. 11.

    Szczepanski, J., Amigó, J. M., Michalek, T., & Kocarev, L. (2005). Cryptographically secure substitutions based on the approximation of mixing maps. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(2), 443–453.

    MathSciNet  Article  Google Scholar 

  12. 12.

    Zhang, Y., Xiao, D., Wen, W., & Nan, H. (2014). Cryptanalysis of image scrambling based on chaotic sequences and Vigenére cipher. Nonlinear Dynamics, 78(1), 235–240.

    MathSciNet  Article  Google Scholar 

  13. 13.

    Zeng, L., Liu, R., Zhang, L. Y., Liu, Y. & Wong, K.-W. (2015). Cryptanalyzing an image encryption algorithm based on scrambling and Veginère cipher. Multimedia Tools and Applications. doi:10.1007/s11042-015-2511-y.

    Google Scholar 

  14. 14.

    Solak, E., & Çokal, (2009). Algebraic break of a cryptosystem based on discretized two-dimensional chaotic maps. Physics Letters A, 373(15), 1352–1356.

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Solak, E., & Çokal, (2010). Algebraic break of image ciphers based on discretized chaotic map lattices. Information Sciences, 181(1), 227–233.

    MathSciNet  Article  Google Scholar 

  16. 16.

    Yap, W.-S., Phan, R. C.-W., Yau, W.-C., & Heng, S.-H. (2015). Cryptanalysis of a new image alternate encryption algorithm based on chaotic map. Nonlinear Dynamics, 80(3), 1483–1491.

    MathSciNet  Article  Google Scholar 

  17. 17.

    Alvarez, G., Montoya, F., Romera, M., & Pastor, G. (2003). Cryptanalysis of an ergodic chaotic cipher. Physics Letters A, 311(2–3), 172–179.

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Arroyo, D., Alvarez, G., Li, S., Li, C., & Nunez, J. (2008). Cryptanalysis of a discrete-time synchronous chaotic encryption system. Physics Letters A, 372(7), 1034–1039.

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Rhouma, R., Solak, E., Arroyo, D., Li, S., Alvarez, G., & Belghith, S. (2009). Comment on “Modified Baptista type chaotic cryptosystem via matrix secret key”. Physics Letters A, 373(37), 3398–3400.

    Article  Google Scholar 

  20. 20.

    Ahmad, J., Hwang, S. O., & Ali, A. (2015). An experimental comparison of chaotic and non-chaotic image encryption schemes. Wireless Personal Communications, 84(2), 901–918.

    Article  Google Scholar 

  21. 21.

    Wadi, S. M., & Zainal, N. (2014). High definition image encryption algorithm based on AES modification. Wireless Personal Communications, 79(2), 811–829.

    Article  Google Scholar 

  22. 22.

    Biham, E., Biryukov, A. & Shamir, A. (1999). Miss in the middle attacks on IDEA and Khufu. Proceedings of the FSE, 1999, 124–138.

    MATH  Google Scholar 

  23. 23.

    Biham, E., & Shamir, A. (1991). Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology, 4(1), 3–72.

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Bahrak, B., & Aref, M. R. (2008). Impossible differential attack on seven-round AES-128. IET Information Security, 2(2), 28–32.

    Article  Google Scholar 

  25. 25.

    Phan, R. C.-W. (2002). Classes of impossible differentials of advanced encryption standard. IEE Electronics Letters, 38(11), 508–510.

    Article  Google Scholar 

  26. 26.

    Dunkelman, O., & Keller, N. (2010). The effects of the omission of last round’s MixColumns on AES. Information Processing Letters, 110(8–9), 304–308.

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Bernstein, D. J., & Schwabe, P. (2008). New AES software speed records. Proceedings of the INDOCRYPT, 2008, 322–336.

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Matsui, M. (2006). How far can we go on the x64 processors? Proceedings of the FSE, 2006, 341–358.

    Google Scholar 

  29. 29.

    Rebeiro, C., Selvakumar, A. D., & Devi, A. S. L. (2006). Bitslice implementation of AES. Proceedings of the CANS, 2006, 203–212.

    MATH  Google Scholar 

  30. 30.

    Matsui, M., & Nakajima, J. (2007). On the power of bitslice implementation on Intel Core2 processor. Proceedings of the CHES, 2007, 121–134.

    Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for helpful comments. Wun-She Yap would like to acknowledge UTAR for financially funding his research through the UTAR Research Fund number UTARRF 6200/Y43. Raphael Phan acknowledges the financial support by the Ministry of Education’s Fundamental Research Grant Scheme (FRGS) under the project ProvAdverse.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wun-She Yap.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yap, W., Phan, R.C. & Goi, B. Cryptanalysis of a High-Definition Image Encryption Based on AES Modification. Wireless Pers Commun 88, 685–699 (2016). https://doi.org/10.1007/s11277-016-3192-1

Download citation

Keywords

  • Image encryption
  • Modified AES
  • Cryptanalysis
  • Impossible differential attack