Wireless Personal Communications

, Volume 88, Issue 3, pp 685–699 | Cite as

Cryptanalysis of a High-Definition Image Encryption Based on AES Modification

  • Wun-She YapEmail author
  • Raphael C.-W. Phan
  • Bok-Min Goi


Wadi and Zainal recently proposed a high definition image encryption algorithm based on a modified AES-128 block cipher in (Wirel Pers Commun 79(2):811–829, 2014). In this paper, we show that the core component of their image encryption algorithm, a modified AES-128 cipher, is insecure against impossible differential attack. The proposed impossible differential attack on the full rounds of the modified AES-128 cipher has a time complexity of around \(2^{88.74}\) encryptions with \(2^{114.06}\) chosen plaintexts and \(2^{99}\) bytes of memory, in contrast to the expected security of \(2^{128}\). The existence of such an attack disproves the claims made by the designers that their modified AES-128 cipher improves the security of the AES cipher and that it can subsequently be used to construct a secure image encryption scheme. The root cause of this attack, some other issues with the modified AES cipher and possible solutions are described to serve as important remarks in designing a secure image encryption scheme.


Image encryption Modified AES Cryptanalysis Impossible differential attack 



We would like to thank the anonymous reviewers for helpful comments. Wun-She Yap would like to acknowledge UTAR for financially funding his research through the UTAR Research Fund number UTARRF 6200/Y43. Raphael Phan acknowledges the financial support by the Ministry of Education’s Fundamental Research Grant Scheme (FRGS) under the project ProvAdverse.


  1. 1.
    Pareek, N. K., Patidar, V., & Sud, K. K. (2003). Discrete chaotic cryptography using external key. Physics Letters A, 309(1–2), 75–82.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Pareek, N. K., Patidar, V., & Sud, K. K. (2006). Image encryption using chaotic logistic map. Image and Vision Computing, 24(9), 926–934.CrossRefGoogle Scholar
  3. 3.
    Patidar, V., Pareek, N. K., Purohit, G., & Sud, K. K. (2010). Modified substitution-diffusion image cipher using chaotic standard and logistic maps. Communications in Nonlinear Science and Numerical Simulation, 15(10), 2755–2765.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Norouzi, B., Mirzakuchaki, S., Seyedzadeh, S. M., & Mosavi, M. R. (2014). A simple, sensitive and secure image encryption algorithm based on hyper-chaotic system with only one round diffusion process. Multimedia Tools and Applications, 71(3), 1469–1497.CrossRefGoogle Scholar
  5. 5.
    Wang, X., & Guo, K. (2014). A new image alternate encryption algorithm based on chaotic map. Nonlinear Dynamics, 76(4), 1943–1950.CrossRefGoogle Scholar
  6. 6.
    Ahmad, J., & Hwang, S. O. (2015). A secure image encryption scheme based on chaotic maps and affine transformation. Multimedia Tools and Applications. doi: 10.1007/s11042-015-2973-y.Google Scholar
  7. 7.
    Khan, M. (2015). A novel image encryption scheme based on multiple chaotic S-boxes. Nonlinear Dynamics, 82(1), 527–533.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Daemen, J. & Rijmen, V. (2000). Rijndael for AES. Proceedings of the AES Candidate Conference, 2000, 343–348.Google Scholar
  9. 9.
    Shahid, Z., Chaumont, M., & Puech, W. (2011). Fast protection of H.264/AVC by selective encryption of CAVLC and CABAC for I and P frames. IEEE Transactions on Circuits and Systems for Video Technology, 21(5), 565–576.CrossRefGoogle Scholar
  10. 10.
    Pinto, M., Puech, W., & Subsol, G. (2013). Protection of JPEG compressed e-comics by selective encryption. Proceedings of the ICIP, 2013, 4588–4592.Google Scholar
  11. 11.
    Szczepanski, J., Amigó, J. M., Michalek, T., & Kocarev, L. (2005). Cryptographically secure substitutions based on the approximation of mixing maps. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(2), 443–453.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhang, Y., Xiao, D., Wen, W., & Nan, H. (2014). Cryptanalysis of image scrambling based on chaotic sequences and Vigenére cipher. Nonlinear Dynamics, 78(1), 235–240.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zeng, L., Liu, R., Zhang, L. Y., Liu, Y. & Wong, K.-W. (2015). Cryptanalyzing an image encryption algorithm based on scrambling and Veginère cipher. Multimedia Tools and Applications. doi: 10.1007/s11042-015-2511-y.Google Scholar
  14. 14.
    Solak, E., & Çokal, (2009). Algebraic break of a cryptosystem based on discretized two-dimensional chaotic maps. Physics Letters A, 373(15), 1352–1356.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Solak, E., & Çokal, (2010). Algebraic break of image ciphers based on discretized chaotic map lattices. Information Sciences, 181(1), 227–233.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Yap, W.-S., Phan, R. C.-W., Yau, W.-C., & Heng, S.-H. (2015). Cryptanalysis of a new image alternate encryption algorithm based on chaotic map. Nonlinear Dynamics, 80(3), 1483–1491.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Alvarez, G., Montoya, F., Romera, M., & Pastor, G. (2003). Cryptanalysis of an ergodic chaotic cipher. Physics Letters A, 311(2–3), 172–179.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Arroyo, D., Alvarez, G., Li, S., Li, C., & Nunez, J. (2008). Cryptanalysis of a discrete-time synchronous chaotic encryption system. Physics Letters A, 372(7), 1034–1039.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rhouma, R., Solak, E., Arroyo, D., Li, S., Alvarez, G., & Belghith, S. (2009). Comment on “Modified Baptista type chaotic cryptosystem via matrix secret key”. Physics Letters A, 373(37), 3398–3400.CrossRefGoogle Scholar
  20. 20.
    Ahmad, J., Hwang, S. O., & Ali, A. (2015). An experimental comparison of chaotic and non-chaotic image encryption schemes. Wireless Personal Communications, 84(2), 901–918.CrossRefGoogle Scholar
  21. 21.
    Wadi, S. M., & Zainal, N. (2014). High definition image encryption algorithm based on AES modification. Wireless Personal Communications, 79(2), 811–829.CrossRefGoogle Scholar
  22. 22.
    Biham, E., Biryukov, A. & Shamir, A. (1999). Miss in the middle attacks on IDEA and Khufu. Proceedings of the FSE, 1999, 124–138.zbMATHGoogle Scholar
  23. 23.
    Biham, E., & Shamir, A. (1991). Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology, 4(1), 3–72.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Bahrak, B., & Aref, M. R. (2008). Impossible differential attack on seven-round AES-128. IET Information Security, 2(2), 28–32.CrossRefGoogle Scholar
  25. 25.
    Phan, R. C.-W. (2002). Classes of impossible differentials of advanced encryption standard. IEE Electronics Letters, 38(11), 508–510.CrossRefGoogle Scholar
  26. 26.
    Dunkelman, O., & Keller, N. (2010). The effects of the omission of last round’s MixColumns on AES. Information Processing Letters, 110(8–9), 304–308.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Bernstein, D. J., & Schwabe, P. (2008). New AES software speed records. Proceedings of the INDOCRYPT, 2008, 322–336.MathSciNetzbMATHGoogle Scholar
  28. 28.
    Matsui, M. (2006). How far can we go on the x64 processors? Proceedings of the FSE, 2006, 341–358.Google Scholar
  29. 29.
    Rebeiro, C., Selvakumar, A. D., & Devi, A. S. L. (2006). Bitslice implementation of AES. Proceedings of the CANS, 2006, 203–212.zbMATHGoogle Scholar
  30. 30.
    Matsui, M., & Nakajima, J. (2007). On the power of bitslice implementation on Intel Core2 processor. Proceedings of the CHES, 2007, 121–134.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Lee Kong Chian Faculty of Engineering and ScienceUniversiti Tunku Abdul RahmanSungai LongMalaysia
  2. 2.Faculty of EngineeringMultimedia UniversityCyberjayaMalaysia

Personalised recommendations