Skip to main content
Log in

Handover and SINR Optimized Deployment of LTE Femto Base Stations in Enterprise Environments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The data rates for indoor users can be boosted using low power consuming nodes like Femtos base stations (FBSs) in long term evolution networks. The manner in which Femtos are deployed inside a building environment, with large number of users, can significantly affect the throughput and number of handovers among Femtos. In our system model, we take into account the following parameters: co-channel interference between FBS and macro BSs, wall attenuation factor and user density in the enterprise building environment. In this work, we formulate two mixed integer linear programming (MILP) optimization models: optimal constant threshold signal to interference plus noise ratio (OptCTSINR) which guarantees a certain minimum SINR and also minimizes the number of Femtos needed for the coverage of enterprise buildings and optimal handover (OptHO) which reduces the number of handovers when the user passes through a certain portion (i.e., within a room or corridor) of the building. We solve these MILP models by utilizing branch and cut framework of CPLEX solver using General Algebraic Modeling System (GAMS) tool. When compared to K-means clustering based placement scheme, for a given number of Femtos, proposed OptCTSINR scheme results in an average SINR improvement of 28 %. Similarly, our proposed OptHO scheme reduces 30 % of the unnecessary handovers when compared to OptCTSINR scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Small Cells Forum. http://smallcellforum.org/smallcellforum.

  2. De La Roche, G., Valcarce, A., López-Pérez, D., & Zhang, J. (2010). Access control mechanisms for femtocells. IEEE Communications Magazine, 48(1), 33–39.

    Article  Google Scholar 

  3. Chu, X., Wu, Y., Benmesbah, L., & Ling, W.-K. (2010). Resource allocation in hybrid macro/femto networks. In Wireless communications and networking conference workshops (WCNCW), 2010 IEEE (pp. 1–5), IEEE.

  4. Bernal-Mor, E., Pla, V., Gutierrez-Estevez, D. M., & Martinez-Bauset, J. (2012). Resource management for macrocell users in hybrid access femtocells. In Global communications conference (GLOBECOM), 2012 IEEE (pp. 1859–1864), IEEE.

  5. Qualcomm Inc. (2011). Enterprise multi-femtocell deployment guidelines.

  6. Li, Y., Feng, Z., Chen, S., Chen, Y., Xu, D., Zhang, P., et al. (2011). Radio resource management for public femtocell networks. EURASIP Journal on Wireless Communications and Networking, 2011(1), 1–16.

    Article  Google Scholar 

  7. Sathya, V., Gudivada, H. V., Narayanam, H., Krishna, B. M., & Tamma, B. R. (2013). Enhanced distributed resource allocation and interference management in LTE femtocell networks. In IEEE 9th international conference on wireless and mobile computing, networking and communications (WiMob) (pp. 553–558), IEEE.

  8. Ha, V., & Le, L. (2014). Fair resource allocation for OFDMA femtocell networks with macrocell protection. In IEEE Transaction on Vehicular Technology (Vol. 63, pp. 1388–1401).

  9. Deb, S., Monogioudis, P., Miernik, J., & Seymour, J. P. (2014). Algorithms for enhanced inter-cell interference coordination (eICIC) in LTE HetNets. IEEE/ACM Transactions on Networking (TON), 22(1), 137–150.

    Article  Google Scholar 

  10. Qvarfordt, C., & Legg, P. (2012). Evaluation of LTE HetNet deployments with realistic traffic models. In IEEE 17th international workshop on computer aided modeling and design of communication links and networks (CAMAD) (pp. 307–311), IEEE.

  11. Bae, H.-D., Ryu, B., & Park, N.-H. (2011). Analysis of handover failures in LTE femtocell systems. In Australasian Telecommunication Networks and Applications Conference (ATNAC) (pp. 1–5), IEEE.

  12. Zhang, H., Ma, W., Li, W., Zheng, W., Wen, X., & Jiang, C. (2011). Signalling cost evaluation of handover management schemes in LTE-advanced femtocell. In IEEE 73rd vehicular technology conference (VTC Spring) (pp. 1–5), IEEE.

  13. Ulvan, A., Bestak, R., & Ulvan, M. (2010). Handover scenario and procedure in LTE-based femtocell networks. In UBICOMM 2010, The fourth international conference on mobile ubiquitous computing, systems, services and technologies (pp. 213–218).

  14. Lin, Y., Yu, W., & Lostanlen, Y. (2012). Optimization of wireless access point placement in realistic urban heterogeneous networks. In GLOBECOM (pp. 4963–4968), IEEE.

  15. Guo, W., Wang, S., Chu, X., Zhang, J., Chen, J., & Song, H. (2013). Automated small-cell deployment for heterogeneous cellular networks. IEEE Communications Magazine, 51(5), 46–53.

    Article  Google Scholar 

  16. Liu, J., Chen, Q., & Sherali, H. D. (2012). Algorithm design for femtocell base station placement in commercial building environments. In INFOCOM (pp. 2951–2955), IEEE.

  17. Han, K., Choi, Y. Kim, D., Na, M., Choi, S., & Han, K. (2009). Optimization of femtocell network configuration under interference constraints. In WiOPT, IEEE.

  18. Sathya, V., Ramamurthy, A., & Reddy, B. (2014). On placement and dynamic power control of femtocells in LTE hetnets. In GLOBECOM, IEEE.

  19. Sathya, V., Ramamurthy, A., & Reddy, B. (2015). Joint placement and power control of LTE femto base stations in enterprise environments. In ICNC (accepted), IEEE.

  20. Xenakis, D., Passas, N., Merakos, L., & Verikoukis, C. (2014). Mobility management for femtocells in LTE-advanced: key aspects and survey of handover decision algorithms. In IEEE Communications Survey and Tutorials (Vol. 16, pp. 64–91).

  21. Chaganti, R., Sathya, V., Ahammed, S. A., Rex, R., & Tamma, B. R. (2013). Efficient son handover scheme for enterprise femtocell networks. In IEEE international conference on advanced networks and telecommuncations systems (ANTS) (pp. 1–6), IEEE.

  22. Wang, L., Zhang, Y., & Wei, Z. (2009). Mobility management schemes at radio network layer for LTE femtocells. In IEEE 69th vehicular technology conference, 2009. VTC Spring 2009 (pp. 1–5), IEEE.

  23. Awada, A., Wegmann, B., Viering, I., & Klein, A. (2013). A son-based algorithm for the optimization of inter-rat handover parameters. IEEE Transactions on Vehicular Technology, 62(5), 1906–1923.

    Article  Google Scholar 

  24. Xenakis, D., Passas, N., Merakos, L., & Verikoukis, C. (2013). Energy-efficient and interference-aware handover decision for the LTE-advanced femtocell network. In IEEE international conference on communications (ICC) (pp. 2464–2468), IEEE.

  25. GAMS. http://www.gams.com/.

  26. Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881–892.

    Article  MATH  Google Scholar 

  27. 3gpp. In LTE; evolved universal terrestrial radio access (E-UTRA); physical layer procedures, 3GPP TS 36.133 version 8.8.0 Release 8.

  28. Kawser, M. T., Hamid, N. I. B., Hasan, M. N., Alam, M. S., & Rahman, M. M. (2010). Downlink SNR to CQI mapping for different multiple antenna techniques in LTE. In ICFIT.

  29. Tastan, B., & Sukthankar, G. (2011). Leveraging human behavior models to predict paths in indoor environments. Pervasive and Mobile Computing, 7(3), 319–330.

    Article  Google Scholar 

  30. 3gpp. In LTE; evolved universal terrestrial radio access (E-UTRA); physical layer procedures, 3GPP TS 36.213 version 8.8.0 Release 8.

  31. 3GPP Releases. http://www.3gpp.org/releases.

  32. Tahalani, M., Sathya, R. V., Suhas, U., Ramaraju, C., & Tamma, B. R. (2013). Optimal femto placement in enterprise femtocell networks. In IEEE ANTS (pp. 1–6).

Download references

Acknowledgments

This work was supported by the Deity, Government of India (Grant No. 13(6)/2010CC&BT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vanlin Sathya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathya, R.V., Venkatesh, V., Ramji, R. et al. Handover and SINR Optimized Deployment of LTE Femto Base Stations in Enterprise Environments. Wireless Pers Commun 88, 619–643 (2016). https://doi.org/10.1007/s11277-016-3185-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3185-0

Keywords

Navigation