Skip to main content
Log in

RegionDCF: A Self-Adapting CSMA/Round-Robin MAC for WLAN

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents RegionDCF, a self-adapting Media Access Control protocol for WLAN that seamlessly behaves as either CSMA or round-robin access methods simultaneously taking advantage of their most effective properties. In contrast to preceding works in this area that focused on enhancements of a particular access protocol, or on a mechanism that switches between different access protocols, this paper proposes a single access protocol capable of behaving simultaneously as a pure contention-based (e.g., CSMA) and as a round-robin-based protocol depending on traffic conditions. The main building block of the proposed protocol is the region, a cluster of nodes that establishes orderly access to the channel. Once a member of a region gains channel access through a contention-based protocol, it allows contention-free transmission to all other members of the region in a round-robin manner. The functionality of the protocol for UDP and TCP traffic is discussed. Simulation results show that RegionDCF outperforms standard CSMA-based IEEE 802.11 Distributed Coordination Function in many aspects, including higher throughput and channel efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rangel, V., Gomez, J., & Ortiz, J. (2006). Performance analysis of QoS scheduling in broadband IEEE 802.16 based networks. In Proceedings of OPNETWORK 2006 technology conference, USA.

  2. P802.11. (1997). IEEE standard for wireless LAN medium access control (MAC) and (PHY) specifications, 802.11. Nov 1997.

  3. Carvalho, M., & Garcia-Luna-Aceves, J. J. (2003). Delay analysis of IEEE 802.11 in single-hop networks. In Proceedings of IEEE international conference on network protocols.

  4. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  5. Cali, F., Conti, M., & Gregori, E. (Dec 2000). Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Networking Transactions, 8, 785–799.

  6. IEEE. (2007). IEEE, 802 part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. In IEEE Standard.

  7. Ni, Q., Aad, I., Barakat, C., & Turletti, T. (2003). Modeling and analysis of slow CW decrease for IEEE 802.11 WLAN. In Proceedings of IEEE PIMRC, Beijing, China, Sept 2003.

  8. Albalt, M., & Nasir, Q. (2009). Adaptive backoff algorithm for IEEE 802.11 MAC protocol. In textitScientific research, international journal communications, network and system sciences (Vol. 4, pp. 249–323).

  9. Kwon, Y., Fong, Y., & Latchman, H. (2003). A novel MAC protocol with fast collision resolution for wireless LANs. In Proceedings of IEEE INFOCOM, San Francisco, USA, March 2003.

  10. Liu, Q., Zhao, D., & Ding, H. (2011). An improved polling scheme for PCF MAC protocol. In IEEE wireless communications network mobile computing, WiCOM.

  11. Ferng, H. W., Setiadjiand, C., & Leonovich, A. (2001). Fair round robin binary countdown to achieve QoS guarantee and fairness in WLANs. Kluwer Acad. Publishers. Wireless Network, 17(5), 1259–1271.

  12. IEEE 802.11 WG. (2009). IEEE 802.11n: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 5: Enhancements for higher throughput. In IEEE Standards. Oct 2009.

  13. Leffler, S. (2009). TDMA for long distance wireless networks. White Paper.

  14. Djukic, P., & Mohapatra, P. (2009). Soft-TDMAC: A softwore TDMA-based MAC over commodity 802.11 hardware. In Proceedings of IEEE Infocom.

  15. Guo, F., & Chiueh, T. C. (2007). Software TDMA for VoIP applications over IEEE 802.11 wireless LAN. In Proceedings of IEEE Infocom.

  16. Doerr, C., Neufeld, M., Fifield, J., Weingart, T., Sicker, D. C., & Grunwald, D. (2005). MultiMAC-an adaptive MAC framework for dynamic radio networking. In Proceedings of IEEE international symposium on new frontiers in dynamic spectrum access networks.

  17. Riggi, A., & Gomez, J. (2011). RegionDCF: A self-adapting CSMA/round-robin media access protocol for WLAN. In Proceedings of IEEE local computer networks, Bonn, Germany (pp. 211–214).

  18. Zhu, H., & Cao, G. (2006). rDCF: A relay-enabled medium access control protocol for wireless ad hoc networks. IEEE Transactions on Mobile Computing, 5(9), 1201–1214.

  19. Holland, G., Vaidya, N., & Bahl, P. (2001). A rate-adaptive MAC protocol for multihop wireless networks. In Proceedings of ACM Mobicom.

  20. Baldo, N., Maguolo, F., Miozzo, M., Rossi, M., & Zorzi, M. (2007). ns2-miracle: A modular framework for multi-technology and cross-layer support in network simulator 2. In Proceedings of the 2nd international conference on performance evaluation methodologies and tools.

  21. Gonzalez, M., Gomez, J., Rangel, V., Lopez, M. L., & de Oca, M. M. Martha Montes (2010). GUIDE-Gradient: A guiding algorithm for mobile nodes in wlan and ad hoc networks. Wireless Personal Communications. Springer ISSN: 0929-6212.

  22. Cicconetti, C., Mingozzi, E., & Stea, G. (2006). An integrated framework for enabling effective data collection and statistical analysis with ns-2. In Proceedings of the 2006 workshop on ns-2: the IP network simulator.

Download references

Acknowledgments

This work was supported in part by research funds from DGAPA-PAPIIT IN114813.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Gomez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, J., Riggi, A. RegionDCF: A Self-Adapting CSMA/Round-Robin MAC for WLAN. Wireless Pers Commun 85, 2169–2190 (2015). https://doi.org/10.1007/s11277-015-2898-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2898-9

Keywords

Navigation