Skip to main content

Proxy Mobile IPv6 Handover Management in Vehicular Networks: State of the Art, Taxonomy and Directions for Future Research


In vehicular communication networks, to facilitate the variety of intelligent transportation system (ITS) applications, handover management is considered as the one of the most challenging research issues. The most compatible and interoperable handover management solutions are designed based on IP mobility protocols. However, due to the unique characteristics of vehicles such as high velocity, IP mobility management protocols are still unacceptable for ITS real-time applications that are sensitive to network latencies. Thus, whenever the vehicle roams between two domains, which is most likely to occur in vehicular networks, its reachability status will be broken-down causing high handover latency and inevitable traffic loss. Recently, proxy mobile IPv6 (PMIPv6) has been proposed to support the mobility management without any intervention of the mobile user in the mobility-related signaling. As PMIPv6 will be deployed in the wireless technologies for next generation networks (i.e., LTE/LTE-advanced, WiFi and WiMAX), vehicular ad hoc networks (VANETs) are expected to employ PMIPv6 protocol in vehicle to infrastructure connection as well. In this paper, we introduce a comprehensive review of the state of the art of PMIPv6 handover management in VANET. We present a new taxonomy and classify the existing schemes according to different considerations. Finally, we outline several open issues and handoff management design considerations as a direction for future research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Johnson, D., Perkins, C., & Arkko, J. (2004). Mobility Support in IPv6. RFC 3775.

  2. Soliman, H., Castelluccia, C., Malki, K. E., & Bellier, L. (2005). Hierarchical mobile IPv6 mobility management (HMIPv6). RFC 4140.

  3. Koodli, R. (2005). Fast handovers for mobile IPv6. RFC 4068.

  4. Lee, J. H., Bonnin, J.-M., Ilsun, Y., & Tai-Myoung, C. (2013). Comparative handover performance analysis of IPv6 mobility management protocols. IEEE Transactions on Industrial Electronics, 60(3), 1077–1088.

    Article  Google Scholar 

  5. Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K., & Patil, B. (2008). Proxy mobile IPv6. RFC 5213.

  6. Hossain, M. S., & Atiquzzaman, M. (2012). Analysis of proxy mobile IPv6: A network-based mobility solution. In 2012 15th international conference on computer and information technology (ICCIT) (pp. 338–344).

  7. Kellokoski, J., Koskinen, J., Rusanen, T., Kalliolahti, P., & Hämäläinen, T. (2013). Proxy mobile IPv6-based seamless handover. In Internet of things, smart spaces, and next generation networking, Lecture Notes in Computer Science (Vol. 8121, pp. 214–223).

  8. Giust, F., Bernardos, C. J., & Oliva, A. D. L. (2014). Analytic evaluation and experimental validation of a network-based IPv6 distributed mobility management solution. IEEE Transactions on Mobile Computing, 13(11), 2484–2497.

    Article  Google Scholar 

  9. Ali-Ahmad, H., Ouzzif, M., Bertin, P., & Lagrange, X. (2014). Performance analysis on network-based distributed mobility management. Wireless Personal Communications, 74(4), 1245–1263.

    Article  Google Scholar 

  10. Lee, K. W., Seo, W. K., Cho, Y. Z., Kim, J. W., & Park, J. S. (2010). Inter-domain handover scheme using an intermediate mobile access gateway for seamless service in vehicular networks. International Journal of Communication Systems, 23(9–20), 1127–1144.

    Article  Google Scholar 

  11. Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., & Zedan, H. (2014). A comprehensive survey on vehicular ad hoc network. Journal of Network and Computer Applications, 37, 380–392.

    Article  Google Scholar 

  12. Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., & Weil, T. (2011). Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys & Tutorials, 13(4), 584–616.

    Article  Google Scholar 

  13. Cespedes, S., Xuemin, S., & Lazo, C. (2011). IP mobility management for vehicular communication networks: Challenges and solutions. IEEE Communications Magazine, 49(5), 187–194.

    Article  Google Scholar 

  14. Banda, L., Mzyece, M., & Noel, G. (2012). IP mobility support: Solutions for vehicular networks. IEEE Vehicular Technology Magazine, 7(4), 77–87.

    Article  Google Scholar 

  15. Sharef, B. T., Alsaqour, R. A., & Ismail, M. (2014). Vehicular communication ad hoc routing protocols: A survey. Journal of Network and Computer Applications, 40, 363–396.

    Article  Google Scholar 

  16. Lili, W., Jianfeng, G., Ilsun, Y., Huachun, Z., Deyun, G., Kangbin, Y., & Pankoo, K. (2014). Survey on distributed mobility management schemes for proxy mobile IPv6. In 2014 IEEE 11th consumer communications and networking conference (CCNC).

  17. Modares, H., Moravejosharieh, A., Lloret, J., & Salleh, R. B. (2014). A survey on proxy mobile IPv6 handover. IEEE Systems Journal, 99, 1–10.

    Article  Google Scholar 

  18. Car-2-car communication consortium-manifesto.

  19. Marshall, A. (2006). V2V: GM technology can prevent accidents. In GM Europe.

  20. Anjum, F., Choi, S., Gligor, V. D., Herrtwich, R. G., Hubaux, J. P., Kumar, P. R., & Shorey, R. (2007). Vehicular networks. IEEE Journal on Selected Areas in Communications, 25(8), 1497–1500.

    Article  Google Scholar 

  21. Hartenstein, H., & Laberteaux, K. P. (2008). A tutorial survey on vehicular ad hoc networks. IEEE Communication Magazine, 46(6), 164–171.

    Article  Google Scholar 

  22. Chang, B.-J., Liang, Y.-H., & Yang, H. J. (2014). Performance analysis with traffic accident for cooperative active safety driving in VANET/ITS. Wireless Personal Communications, 74(2), 731–755.

    Article  Google Scholar 

  23. Lim, J.-Y., Chang, Y., Loo, J., & Alias, M. Y. (2015). Improving VANET performance with heuristic and adaptive fuzzy logic scheme. Wireless Personal Communications, 1–22.

  24. Jiang, D., Taliwal, V., Meier, A., Holfelder, W., & Herrtwich, R. (2006). Design of 5.9 GHz DSRC-based vehicular safety communication. IEEE Wireless Communications, 13(5), 36–43.

    Article  Google Scholar 

  25. Olariu, S., & Weigle, M. C. (2009). Vehicular networks: From theory to practice (1st ed.). London: Chapman & Hall/CRC.

    Book  Google Scholar 

  26. Kiran, P. S., Rao, B. T., & Reddy, D. (2010). Architectural crises in vehicular ad hoc networks. Global Journal of Computer Science and Technology, 10, 31–35.

    Google Scholar 

  27. ITS JPO. (2008). Vehicle safety applications. Technical Report, US DOT IntelliDrive(sm) Project - ITS Joint Program Office.

  28. SAFESPOT D8.4.4. (2008). Use cases, functional specifications and safety margin applications for the SAFESPOT Project. IST Safespot Project, Technical Report. Safespot IST-4-026963-IP deliverable D8.4.4, pp. 1–54.

  29. VSC-A. (2009). Final Report. US DOT, Vehicle Safety Communications Applications (VSC-A) Project DOT HS 810 073.

  30. ETSITR102638. (2009). Intelligent transport system (ITS); vehicular communications; basic set of applications; definition. ETSI Std., ETSI ITS Specification TR 102 638 version 1.1.1.

  31. Kempf, J. (2007). Problem statement for network-based localized mobility management (NETLMM). Internet Engineering Task Force, RFC 4830.

  32. Yokota, H., Chowdhury, K., Koodly, R., Patil, B., & Xia, F. (2010). Fast handovers for proxy mobile IPv6. RFC 5949.

  33. Devarapalli, V., Wakikawa, R., Petrescu, A., & Thubert P. (2005). Network mobility (NEMO) basic support protocol. RFC 3963.

  34. Kim, M., Lee, S., Cypher, D., & Golmie, N. (2013). Performance analysis of fast handover for proxy mobile IPv6. Information Sciences, 219, 208–224.

    Article  Google Scholar 

  35. Moon, S., Kim, M., Lee, S., Cypher, D., & Golmie, N. (2011). Fast handover with low latency for proxy MIPv6 in vehicular networks. In Proceedings of the 5th international conference on ubiquitous information management and communication (ICUIMC ‘11). New York: ACM.

  36. Kim, M., Lee, S., & Golmie, N. (2012). Enhanced fast handover for proxy mobile IPv6 in vehicular networks. Wireless Networks, 18(4), 401–411.

    Article  Google Scholar 

  37. Tsourdos, S., Michalas, A., Sgora, A., & Vergados, D. (2014). Enhanced fast handovers for PMIPv6 in vehicular environments. In The 5th international conference on information, intelligence, systems and applications (pp. 420–425).

  38. Lu, H., Zhang, S., & Lin, X. (2012). Mobility-assisted fast handover for proxy mobile IPv6 in vehicle-to-infrastructure communications. In Intelligent Transportation Systems (ITSC), 2012 15th International IEEE Conference on (pp. 921–926), Anchorage, 16–19 September, 2012.

  39. Hussain, H. N., Bakar, K. A., & Salleh, S. (2011). A novel intra-domain continues handover solution for inter-domain Pmipv6 based vehicular network. International Journal of Advanced Computer Science and Applications, 2(12), 12–18.

  40. Moravejosharieh, A., & Modares, H. (2014). A proxy MIPv6 handover scheme for vehicular ad-hoc networks. Wireless Personal Communications, 75(1), 609–626.

    Article  Google Scholar 

  41. Montavont, J., & Noel, T. (2006). IEEE 802.11 handovers assisted by GPS information. In IEEE international conference on wireless and mobile computing, networking and communications, (WiMob’2006) (pp. 166–172).

  42. Sandonis, V., Calderon, M., Soto, I., & Bernardos, C. J. (2013). Design and performance evaluation of a PMIPv6 solution for geonetworking-based VANETs. Ad Hoc Networks, 11(7), 2069–2082.

    Article  Google Scholar 

  43. Hussain, H. N., Bakar, K. A., & Salleh, S. (2012). Using media independent handover to support PMIPv6 inter-domain mobility based vehicular networks. International Journal of Communication Networks and Information Security, 4(3), 182–195.

  44. Ze-qun, H., Song-nan, B., & Jung, J. (2009). A MIH services based application-driven vertical handoff scheme for wireless networks. In Fifth international joint conference on INC, IMS and IDC, 2009. NCM’09 (pp. 1428–1431).

  45. Meneguette, R. I., Bittencourt, L. F., & Madeira, E. R. (2013). A seamless flow mobility management architecture for vehicular communication networks. Journal of Communications and Networks, 15, 207–216.

    Article  Google Scholar 

  46. Dias, J., Cardote, A., Neves, F., Sargento, S., & Oliveira, A. (2012). Seamless horizontal and vertical mobility in VANET. In IEEE vehicular networking conference (VNC) (pp. 226–233).

  47. Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 3: Network Architecture, ETSI TS 102 636-3, Mar. 2010, v1.1.1.

  48. Intelligent Transport Systems (ITS); Vehicular Communications; Part 4: geographical addressing and forwarding for point-to-point and point-to-multipoint communications; Sub-Part 1: media-independent functionality, ETSI TS 102 636-4-1, Nov. 2010, v0.0.9.

  49. Soto, I., Bernardos, C. J., Calderon, M., Banchs, A., & Azcorra, A. (2009). Nemo-enabled localized mobility support for internet access in automotive scenarios. IEEE Communications Magazine, 47(5), 152–159.

    Article  Google Scholar 

  50. Lee, H. B., Han, Y. H., & Min, S. G. (2009). Node mobility support scheme between the mobile network and PMIPv6 networks. In First international conference on networks and communications (pp. 93–97).

  51. Lee, H. B., Han, Y. H., & Min, S. G. (2010). Network mobility support scheme on PMIPv6 networks. International Journal of Computer Networks & Communications, 2(5), 206–2012.

    Article  Google Scholar 

  52. Lee, H. B., Min, S. G., Lee, K. H., Lee, H. W., & Han, Y. H. (2010). PMIPv6-based NEMO protocol with efficient buffering scheme. In Proceedings of the 5th international conference on ubiquitous information technologies and applications (CUTE) (pp. 1–6).

  53. SamuelRaj, A. J., Jayapal, S., & Varadharajan, V. (2014). Network mobility supported proxy mobile IPV6. Journal of Computer Science, 10(12), 1792–1797.

    Article  Google Scholar 

  54. SamuelRaj, A. J., & Jayapal, S. (2013). Reducing binding update in NEMO supported PMIPV6. International Journal of Computer Trends and Technology (IJCTT), 6(3), 150–157.

    Google Scholar 

  55. Dinakaran, M., & Balasubramanie, P. (2011). Integrating N-PMIPv6 and simultaneous bindings avoid packet loss in NEMO. International Journal of Computer Applications, 15(4), 33–36.

    Article  Google Scholar 

  56. Dinakaran, M., & Balasubramanie, P. (2012). Performance tuning of data transfer in vehicular networks. International Journal of Computer Science Issues (IJCSI), 9(1), 350–356.

    Google Scholar 

  57. Yan, Z., Zhou, H., & You, I. (2010). N-NEMO: A comprehensive network mobility solution in proxy mobile IPv6 network. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JOWUA), 1(2/3), 52–70.

    Google Scholar 

  58. Yan, Z., Zhang, S., Zhou, H., Zhang, H., You, I. (2010). Network mobility support in PMIPv6 network. In Proceedings of the 6th international wireless communications and mobile computing conference (IWCMC) (pp. 890–894).

  59. Teraoka, F., & Arita, T. (2011). PNEMO: A network-based localized mobility management protocol for mobile networks. In Third international conference on ubiquitous and future networks (ICUFN) (pp. 168–173).

  60. Arita, T., & Teraoka, F. (2012). PNEMO: A network-based localized mobility management protocol for mobile networks. Information and Media Technologies, 7(2), 861–871.

    Google Scholar 

  61. Lee, J. H., & Ernst, T. (2011). Lightweight network mobility within PMIPv6 for transportation systems. IEEE Systems Journal, 5(3), 352–361.

    Article  Google Scholar 

  62. Lee, J. H., Ernst, T., & Chilamkurti, N. (2012). Performance analysis of PMIPv6-based network mobility for intelligent transportation systems. IEEE Transactions on Vehicular Technology, 61(1), 74–85.

    Article  Google Scholar 

  63. Ryu, S., Choi, J.-W., & Park, K.-J. (2012). A scheme improving fast PMIPv6-based network mobility by eliminating tunneling overload for ITS. In Proceedings of IEEE intelligent vehicles symposium (pp. 1–5).

  64. Ryu, S., Choi, J.-W., & Park, K.-J. (2013). Performance evaluation of improved fast PMIPv6-based network mobility for intelligent transportation systems. Journal of Communications and Networks, 15(2), 142–152.

    Article  Google Scholar 

  65. Ryu, S., & Mun Y. (2005). The tentative and early binding update for mobile IPv6 fast handover. In Proceeding of mobile ad-hoc and sensor networks (MSN), Lecture Notes in Computer Science (LNCS) (Vol. 3794, pp. 825–835).

  66. Ryu, S., & Mun Y. (2007). A scheme to enhance TEBU scheme of fast handovers for mobile IPv6. In International conference in embedded software systems, Lecture Notes in Computer Science (LNCS) (Vol. 4523, pp. 773–782).

  67. Tang, W., Tang, H., & Chen, L. (2013). Network mobility solution based on predictive fast handover in PMIPv6 domain. In 4th IEEE international conference on software engineering and service science (ICSESS) (pp. 587–590).

  68. Jeon, S., & Kim, Y. (2011). Cost-efficient network mobility scheme over proxy mobile IPv6 network. Communications, Institution of Engineering and Technology (IET), 5(18), 2656–2661.

    Google Scholar 

  69. Han, S., & Jeong, J. (2012). Design and performance analysis of cost-effective and fast inter-domain network mobility schemes. In 2nd international conference on computer science and network technology (ICCSNT) (pp. 473–476).

  70. Im, I., & Jeong, J. (2012). Security-Effective local-lighted authentication mechanism in NEMO-based fast proxy mobile IPv6 networks. International Journal of Digital Information and Wireless, 2(1), 86–103.

    Google Scholar 

  71. Im, I., & Jeong, J. (2012). Security-effective fast authentication mechanism for network mobility in proxy mobile IPv6 networks. In Second international conference on digital information processing and communications (ICDIPC) (pp. 90–95).

  72. Xiong, K., Zhang, Y., Zhang, Z., Wang, S., & Zhong, Z. (2014). PA-NEMO: Proxy mobile IPv6-aided network mobility management scheme for 6LoWPAN. Elektronika Ir Eelektronika, 20(3), 98–103.

    Google Scholar 

  73. Nguyen, T. T., Bonnet, C., & Härri, J. (2013). Proxy mobile IPv6 for electric vehicle charging service: Use cases and analysis. In 2013 IEEE 24th international symposium in personal indoor and mobile radio communications (PIMRC), United Kingdom (pp. 127–131).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mohammed Balfaqih.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balfaqih, M., Ismail, M., Nordin, R. et al. Proxy Mobile IPv6 Handover Management in Vehicular Networks: State of the Art, Taxonomy and Directions for Future Research. Wireless Pers Commun 84, 1509–1534 (2015).

Download citation

  • Published:

  • Issue Date:

  • DOI: