Skip to main content
Log in

Efficient Internet Access Framework for Mobile Ad Hoc Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The development of the Internet services and applications and the trend in the fourth generation (4G) wireless networks to all-IP networks have led to a growing demand for enabling Mobile Ad hoc NETworks (MANETs) to connect to the Internet and achieving the goal of omnipresence Internet which is accessible anytime and anywhere. However, such integration gives rise to a number of challenges. In this paper, an efficient framework which has considered six main challenges encountered in the MANET–Internet integration is proposed. An adaptive distributed multipath internet gateways discovery protocol is proposed, where the gateways advertise their information dynamically to an adaptive limited number of mobile nodes. For mobile nodes that cannot receive this information, an efficient dynamic routing algorithm for MANETs–Internet integration derived from the ant colony optimization algorithms is proposed. In addition, an improved Quality of Services based gateway selection mechanism providing load-balancing is proposed. The simulation study confirms that the proposed framework is scalable and able to cope with changes on the number and mobility of active sources connecting to the Internet and outperforms other conventional approaches in terms of end-to-end delay, packet delivery ratio while attaining acceptable overhead and fair load distribution among all gateways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Conti, M., & Giordano, S. (2014). Mobile ad hoc networking: milestones, challenges, and new research directions. IEEE Communications Magazine, 52(1), 85–96.

    Article  Google Scholar 

  2. Boukerche, A., Turgut, B., Aydin, N., Ahmad, M. Z., Boloni, L., & Turgut, D. (2011). Routing protocols in ad hoc networks: A survey. ScienceDirect, Computer Networks, 55, 3032–3080.

    Article  Google Scholar 

  3. Kostin, A., Oz, G., & Haci, H. (2014). Performance study of a wireless mobile ad hoc network with orientation-dependent internode communication scheme. International Journal of Communication Systems, 27, 322–340.

    Article  Google Scholar 

  4. Chen, J., Yuan, Z., & Wang, L. (2014). An apropos signal report and adaptive period (ASAP) scheme for fast handover in the fourth-generation wireless networks. ScienceDirect, Journal of Network and Computer Applications, 45, 15–26.

    Article  Google Scholar 

  5. Boudriga, N., Obaidat, M. S., & Zarai, F. (2008). Intelligent network functionalities in wireless 4G networks: Integration scheme and simulation analysis. ScienceDirect, Computer Communications, 31, 3752–3759.

    Article  Google Scholar 

  6. Attia, R., Rizk, R., & Ali, H. A. (2015). Internet connectivity for mobile ad hoc network: A survey based study. Wireless Networks,. doi:10.1007/s11276-015-0922-3.

    Google Scholar 

  7. Fekri, M., & Shrikant, K. (2007). A survey of integrating IP mobility protocols and mobile ad hoc networks. IEEE Communications Surveys & Tutorials, 9(1), 14.

    Article  Google Scholar 

  8. Ruiz, P. M., Ros, F. J., & Gomez-Skarmeta, A. (2005). Internet connectivity for mobile ad hoc networks: Solutions and challenges. IEEE Communications Magazine, 43, 118–125.

    Article  Google Scholar 

  9. Nordstrom, E., Gunningberg, P., & Tschudin, C. (2011). Robust and flexible Internet connectivity for mobile ad hoc networks. ScienceDirect, Ad Hoc Networks, 9, 1–15.

    Article  Google Scholar 

  10. Wang, Y.-L., Song, M., Wei, Y.-F., Wang, Y.-H., & Wang, X.-J. (2014). Improved ant colony-based multi-constrained QoS energy-saving routing and throughput optimization in wireless Ad hoc networks. ScienceDirect, The Journal of China Universities of Posts and Telecommunications, 21, 43–53.

    Article  Google Scholar 

  11. Caria, D. C., & Godbole, V. V. (2013). New approach for routing in mobile ad-hoc networks based on ant colony optimisation with global positioning system. IET Networks, 2, 171–180.

    Article  Google Scholar 

  12. Attia, R., Rizk, R., & Mariee, M. (2010). An ant inspired QoS routing algorithm for MANETs. The International Journal of Ad Hoc & Sensor Wireless Networks, 10(2–3), 111–134.

    Google Scholar 

  13. Sandoval, E. I., Galvan, C. E., & Galvan-Tejada, J. I. (2012). Multicast routing and interoperability between wired and wireless ad hoc network. ScienceDirect, Procedia Engineering, 35, 109–117.

    Article  Google Scholar 

  14. Al-Surmi, I., Othman, M., & Ali, B. M. (2012). Mobility management for IP-based next generation mobile networks: Review, challenge and perspective. ScienceDirect, Journal of Network and Computer Applications, 35, 295–315.

    Article  Google Scholar 

  15. Domingo, M. C., & Remondo, D. (2008). QoS support between ad hoc networks and fixed IP networks. ScienceDirect, Computer Communications, 31, 2646–2655.

    Article  Google Scholar 

  16. Hamidian, A., Korner, U., & Nilsson, A. (2005). Performance of internet access solutions in mobile ad hoc networks. In Springer’s lecture notes in computer science (LNCS), pp. 189–201.

  17. Majumder, K., Ray, S., & Sarkar, S. K. (2011). Design and analysis of the gateway discovery approaches in MANET. High Performance Architecture and Grid Computing Communications in Computer and Information Science, 169, 397–405.

    Google Scholar 

  18. Shimizu, M., & Takami, K. (2014). Improving communication quality by considering route stability for inter-gateway mobile ad-hoc networks. In International conference on information and communication technology convergence (ICTC), pp. 142–147.

  19. Majumder, S., & Asaduzzaman. (2014). A hybrid gateway discovery method for mobile ad hoc networks. In 3rd international conference on informatics, electronics & vision (ICIEV), pp. 1–6.

  20. Palani, K., & Ramamoorthy, P. (2014) Performance evaluation of QoS based DSDV protocol using an integration approach for hybrid networks. In International conference on green computing communication and electrical engineering (ICGCCEE), pp. 1–6.

  21. Yuste, A. J., Trivino, A., & Casilari, E. (2013). Type-2 fuzzy decision support system to optimise MANET integration into infrastructure-based wireless systems. ScienceDirect, Expert Systems with Applications, 40, 2552–2567.

    Article  Google Scholar 

  22. Yuste, A. J., Trivino, A., Casilari, E., & Trujillo, F. D. (2011). Adaptive gateway discovery for mobile ad hoc networks based on the characterization of the link lifetime. IET Communications, 5, 2241–2249.

    Article  Google Scholar 

  23. Lin, Z., Yuan-an, L., Kai-ming, L., Lin-bo, Z., & Ming, Y. (2010). An adaptive algorithm for connecting mobile ad hoc network to Internet with unidirectional links supported. ScienceDirect, The Journal of China Universities of Posts and Telecommunications, 17, 44–49.

    Google Scholar 

  24. Javaid, U., Rasheed, T., Meddour, D.-E., & Ahmed, T. (2008). Adaptive distributed gateway discovery in hybrid wireless networks. In Proceedings of the IEEE wireless communications and networking conference (WCNC), pp. 2735–2740.

  25. Domingo, M. C., & Prior, R. (2007). An adaptive gateway discovery algorithm to support QoS when providing Internet access to mobile ad hoc networks. Journal of Networks, 2(2), 33–44.

    Article  Google Scholar 

  26. Park, B.-N., Lee, W., & Lee, C. (2007). QoS-aware internet access schemes for wireless mobile ad hoc networks. ScienceDirect, Computer Communications, 30, 369–384.

    Article  Google Scholar 

  27. Zhong, S., & Zhang, Y. (2013). How to select optimal gateway in multi-domain wireless networks: alternative solutions without learning. IEEE Transactions on Wireless Communications, 12, 5620–5630.

    Article  Google Scholar 

  28. Bouk, S. H., Sasase, I., Ahmed, S. H., & Javaid, N. (2012). Gateway discovery algorithm based on multiple QoS path parameters between mobile node and gateway node. Journal of Communications and Networks, 14(4), 434.

    Article  Google Scholar 

  29. Li, X., & Li, Z. (2010). A MANET accessing internet routing algorithm based on dynamic gateway adaptive selection. Frontiers of Computer Science in China, 4, 143–150.

    Article  Google Scholar 

  30. Jaron, A., Pangalos, P., Mihailovic, A., & Aghvami, A. H. (2012). Proactive autonomic load uniformisation with mobility management for wireless internet protocol (IP) access networks. IET Networks, 1, 229–238.

    Article  Google Scholar 

  31. Le-Trung, Q., Engelstad, P. E., Skeie, T., & Taherkordi, A. (2008). Load-balance of intra/inter-MANET traffic over multiple Internet gateways. In Proceedings of the 6th international conference on advances in mobile computing and multimedia, MOMM’08, pp. 50–57.

  32. Wu, P., Cui, Y., Wu, J., Liu, J., & Metz, C. (2013). Transition from IPv4 to IPv6: A state-of-the-art survey. IEEE Communications Surveys & Tutorials, 15(3), 1407.

    Article  Google Scholar 

  33. Wang, X., & Qian, H. (2015). Dynamic and hierarchical IPv6 address configuration for a mobile ad hoc network. International Journal of Communication Systems, 28, 127–146.

    Article  Google Scholar 

  34. Grajzer, M., Zernicki, T., & Glabowski, M. (2014). ND ++—An extended IPv6 neighbor discovery protocol for enhanced stateless address autoconfiguration in MANETs. International Journal of Communication Systems, 27, 2269–2288.

    Article  Google Scholar 

  35. Wang, X., & Qian, H. (2014). A tree-based address configuration for a MANET. ScienceDirect, Pervasive and Mobile Computing, 12, 122–137.

    Google Scholar 

  36. Yonghang, Y., Linlin, C., Chengping, T., & Hui, Z. (2012). A novel IP address auto-configuration scheme for MANET with multiple gateways. In Proceedings of the 8th international conference on wireless communications, networking, and mobile computing (WiCOM), pp. 1–6.

  37. Ancillotti, E., Bruno, R., Conti, M., & Pinizzotto, A. (2009). Dynamic address autoconfiguration in hybrid ad hoc networks. ScienceDirect, Pervasive and Mobile Computing, 5, 300–317.

    Article  Google Scholar 

  38. Kim, D., Jeong, H.-J., Toh, C. K., & Oh, S. (2009). Passive duplicate address-detection schemes for on-demand routing protocols in mobile ad hoc networks. IEEE Transactions on Vehicular Technology, 58(7), 3558.

    Article  Google Scholar 

  39. Cui, Y., Dong, J., Wu, P., Wu, J., Metz, C., Lee, Y. L., & Durand, A. (2013). Tunnel-based IPv6 transition. IEEE Internet Computing, 17, 62–68.

    Article  Google Scholar 

  40. Xiaonan, W., & Shan, Z. (2014). Research on mobility handover for IPv6-based MANET. Transactions on Emerging Telecommunications Technologies, 25, 679–691.

    Article  Google Scholar 

  41. Ding, S. (2009). Mobile IP handoffs among multiple Internet gateways in mobile ad hoc networks. IET Communications, 3, 752–763.

    Article  Google Scholar 

  42. Tsumochit, J., Masaymatt, K., Ueharat, H., & Yokoymat, M. (2003). Impact of mobility metric on routing protocols for mobile ad hoc networks. In Proceedings of IEEE pacific rim conference on communications, computers and signal processing (PACRIM), vol. 1, pp. 322–325.

  43. Abramovici, A., & Chapsky, J. (2000). Feedback control systems: A fast-track guide for scientists and engineers. New York: Springer.

    Book  Google Scholar 

  44. Venkata Rao, R. (2007). Decision making in the manufacturing environment using graph theory and fuzzy multiple attribute decision making methods. New York: Springer.

    MATH  Google Scholar 

  45. The network simulator—NS-2, http://www.isi.edu/nsnam/ns/.

  46. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications & Mobile Computing (WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications, 2(5), 483–502.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radwa Attia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attia, R., Rizk, R. & Arafat Ali, H. Efficient Internet Access Framework for Mobile Ad Hoc Networks. Wireless Pers Commun 84, 1689–1722 (2015). https://doi.org/10.1007/s11277-015-2600-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2600-2

Keywords

Navigation