Skip to main content

Simplified and Improved Analytical Hierarchy Process Aid for Selecting Candidate Network in an Overlay Heterogeneous Networks

Abstract

Analytical hierarchy process (AHP) is one of the pairwise comparison, attributes weight calculation approach of multiple attribute decision making aid to select the candidate network for seamless handoff in an overlay heterogeneous network. The main challenging issue in AHP is manually computing the reciprocal matrix results in an inconsistency indicated by the consistency ratio >0.1. This paper proposes a simplified and improved AHP (SI-AHP), which accepts the perceived one-dimensional linguistic values of the attributes from the decision maker. Further, SI-AHP is used to automatically compute the reciprocal matrix for the attribute weights calculation with the minimum involvement of the decision maker resulting in reduced computational time and improved consistency. The consistency ratio of SI-AHP is further improved by deriving the reciprocal matrix of pairwise comparison of any one of the attribute to others. Using the MATLAB simulations, the proposed SI-AHP is evaluated for the consistency ratio of voice and download traffic and also for 78,125 different combinations of one-dimensional linguistic values of the attributes. SI-AHP’s weight calculated for the decision attributes is used in the multiple attribute decision making approach for selecting the candidate network in an overlay heterogeneous network.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Aretz, K., Haardt, M., Konhuser, W., & Mohr, W. (2001). The future of wireless communications beyond the third generation. Computer Networks, 37(1), 83–92.

    Article  Google Scholar 

  2. 2.

    Kassar, M., Kervella, B., & Pujolle, G. (2008). An overview of vertical handover decision strategies in heterogeneous wireless networks. Computer Commuinication, 31, 2607–2620.

    Article  Google Scholar 

  3. 3.

    Yan, X., Sekercioglu, Y. A., & Narayanan, S. (2010). A survey of vertical handover decision algorithms in fourth generation heterogeneous wireless network. Computer Networks, 54, 1848–1863.

    Article  MATH  Google Scholar 

  4. 4.

    Mrquez-Barja, J., Calafate, C. T., Cano, J.-C., & Manzoni, P. (2011). An overview of vertical handover techniques: Algorithms, protocols and tools. Computer Communications, 34, 985–997.

    Article  Google Scholar 

  5. 5.

    Zekri, M., Jouaber, B., & Zeghlache, D. (2012). A review on mobility management and vertical handover solutions over heterogeneous wireless networks. Computer Communication, 35, 2055–2068.

    Article  Google Scholar 

  6. 6.

    Stevens-Navarro, E., Lin, Y., & Wong, V. W. S. (2008). An MDP-based vertical handoff decision algorithm for heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 57, 1243–1254.

    Article  Google Scholar 

  7. 7.

    Chamodrakas, I., & Martakos, D. (2011). A utility-based fuzzy TOPSIS method for energy efficient network selection in heterogeneous wireless networks. Applied Soft Computing, 11, 3734–3743.

    Article  Google Scholar 

  8. 8.

    Figueira, J., Greco, S., & Ehrgott, M. (Eds.). (2005). Multiple criteria decision analysis: State of the art surveys. Boston, Dordrecht, London: Springer-Verlag.

    Google Scholar 

  9. 9.

    Ning, F., & Zhang, P. (2012). A multiple attribute decision making-based access selection for heterogeneous WCDMA and WLAN networks. In International Conference on Affective Computing and Intelligent Interaction (ICACII-2012) (pp. 1–2).

  10. 10.

    Trestian, R., Ormond, O., & Muntean, G. M. (2012). Game theory-based network selection: Solutions and challenges. IEEE Communications Surveys and Tutorials, 14, 1212–1231.

    Article  Google Scholar 

  11. 11.

    Tzeng, G.-H., & Huang, J.-J. (2011). Multiple attribute decision making: Methods and applications. Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  12. 12.

    Behzadiana, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39, 13051–13069.

    Article  Google Scholar 

  13. 13.

    Wang, L., & Kuo, G. S. (2013). Mathematical modeling for network selection in heterogeneous wireless networks a tutorial. IEEE Communications Surveys and Tutorials, 15, 271–292.

    Article  MATH  Google Scholar 

  14. 14.

    Zardari, N. H., Ahmed, K., Shirazi, S. M., & Yusop, Z. B. (2014). Weighting methods and their effects on multi-criteria decision making model outcomes in water resource management. Springer Briefs in Water Science and Technology. ISBN: 978-3-319-12585-5 (Print) 978-3-319-12586-2 (Online).

  15. 15.

    Saaty, T. L. (1990). How to make decision: The analytic hierarchy process. European Journal of Operational Research, 48, 9–26.

    Article  MATH  Google Scholar 

  16. 16.

    Saaty, T. L. (2003). Decision-making with the AHP: Why is the principal eigenvector necessary. European Journal of Operational Research, 145, 85–91.

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Saaty, T. L., & Vargas, L. G. (2012). Models, methods, concepts & applications of the analytic hierarchy process. International series in operations research & management science (Vol. 175).

  18. 18.

    Bernasconi, M., Choirat, C., & Seri, R. (2010). The analytic hierarchy process and the theory of measurement. Management Science, 56, 699–711.

    Article  Google Scholar 

  19. 19.

    Sekitani, K., & Yamaki, N. (1999). A logical interpretation for the eigenvalue method in AHP. European Journal of Operational Research, 42, 219–232.

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Tan, R. R., Aviso, K. B., Huelgas, A. P., & Promentilla, M. A. B. (2014). Fuzzy AHP approach to selection problems inprocess engineering involving quantitative and qualitative aspects. Process Safety and Environmental Protection, 92(5), 467–475.

    Article  Google Scholar 

  21. 21.

    Zhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous networks. In IEEE Wireless Communications and Networking Conference (WCNC-04) (pp. 653–658).

  22. 22.

    Javanbarg, M. B., Scawthorn, C., Kiyono, J., & Shahbodaghkhan, B. (2012). Fuzzy AHP-based multicriteria decision making systems using particle swarm optimization. Expert Systems with Applications, 39(1), 960–966.

  23. 23.

    Mosadeghi, R., Warnken, J., Tomlinson, R., & Mirfenderesk, H. (2014). Comparison of fuzzy-AHP and AHP in a spatial multi-criteria decision making model for urban land-use planning. Computers, Environment and Urban Systems, 54–65.

  24. 24.

    Ishizaka, A., Pearman, C., & Nemery, P. (2012). AHPSort: An AHP-based method for sorting problems. International Journal of Production Research, 50(17), 4767–4784.

    Article  Google Scholar 

  25. 25.

    Azadeh, A., Saberi, M., Atashbar, N. Z., Chang, E., & Pazhoheshfar, P. (2013). Z-AHP: A Z-number extension of fuzzy analytical hierarchy process. In 7th IEEE International Conference on Digital Ecosystems and Technologies (DEST) (pp. 141–147).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. R. Chandavarkar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chandavarkar, B.R., Guddeti, R.M.R. Simplified and Improved Analytical Hierarchy Process Aid for Selecting Candidate Network in an Overlay Heterogeneous Networks. Wireless Pers Commun 83, 2593–2606 (2015). https://doi.org/10.1007/s11277-015-2557-1

Download citation

Keywords

  • Overlay networks
  • Multiple attribute decision making
  • Analytical hierarchy process
  • Eigenvector