Skip to main content
Log in

Scalable Video Transmission Over Wireless Networks Based on Loss Distribution and Layer Information

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We propose an efficient scalable video transmission method using unequal forward error correction (FEC) scheme based on loss distribution and layer information. The actual packet loss rates over wireless networks are variable due to the clustered packet losses. First, we deduce the expected packet loss recovery rate from the estimation of the effective packet loss rate using loss distribution statistics. Second, layer-based distortion metric is presented including error propagation effects from hierarchical prediction structure in compressed scalable video packets. Third, the performance metric for FEC assignment is proposed from the layer-based distortion metric and the expected packet loss recovery rate. Finally, the FEC assignment algorithm is proposed for maximizing the performance metric. The proposed unequal FEC assignment method demonstrates robustness and significantly improved performance for scalable video transmission in various channel conditions compared to previous FEC assignment schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Civanlar, M. R., Luthra, A., Wenger, S., & Zhu, W. (2001). Introduction to the special issue on streaming video. IEEE Transactions on Circuits and Systems for Video Technology, 11(3), 265–268.

    Article  Google Scholar 

  2. Darabkh, K. A., Awad, A. M., & Khalifeh, A. (2014). Efficient PFD-based networking and buffering models for improving video quality over congested links. Wireless Personal Communications. doi:10.1007/s1277-014-1857-1

    Google Scholar 

  3. Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology, 17(9), 1103–1120.

    Article  Google Scholar 

  4. Schwarz, H., Marpe, D., & Wiegand, T. (2006). Analysis of hierarchical B pictures and MCTF. In Proceedings of ICME’06 (pp. 1929–1932).

  5. Stuhlmuller, K., Farber, N., Link, M., & Girod, B. (2000). Analysis of video transmission over lossy channels. IEEE Journal on Selected Areas in Communications, 18(6), 1012–1032.

    Article  Google Scholar 

  6. Zhai, F., Eisenberg, Y., Pappas, T., Berry, R., & Katasaggelos, A. (2004). An integrated joint source-channel coding framework for video transmission over packet lossy networks. In ICIP’2004 (pp. 2531–2534).

  7. Xiaokang, Y., Ce, Z., Zheng, L., Xiao, L., & Nam, L. (2005). An unequal packet loss resilience scheme for video over the Internet. IEEE Transactions on Multimedia, 7(4), 735–765.

    Google Scholar 

  8. Yu, X., Modestino, J., Kurceren, R., & Chan, Y. (2008). A model-based approach to evaluation of the efficacy of FEC coding in combating network packet losses. IEEE/ACM Transactions on Networking, 16(3), 628–641.

    Article  Google Scholar 

  9. Chaoub, A., & Ibn-Elhaj, E. (2013). Cross layer design for equal and unequal loss protection frameworks in cognitive radio networks. Computer and Electronics Engineering, 39(2), 571–581.

    Article  Google Scholar 

  10. Cheng, L., Zhang, W., & Chen, L. (2004). Rate-distortion optimized unequal loss protection for FGS compressed video. IEEE Transactions on Broadcasting, 50(2), 126–131.

    Article  Google Scholar 

  11. Wang, Y., Fang, T., Chau, L., & Yap, K. (2007). Two-dimensional channel coding scheme for MCTF-based scalable video coding. IEEE Transactions on Multimedia, 9(1), 37–45.

    Article  Google Scholar 

  12. Ha, H., & Yim, C. (2008). Layer-weighted unequal error protection for scalable video coding extension of H.264/AVC. IEEE Transactions on Consumer Electronics, 54(2), 736–744.

    Article  Google Scholar 

  13. Liu, J., Cho, Y., Guo, Z., & Kuo, C. (2010). Bit allocation for spatial scalability coding of H.264/SVC with dependent rate-distortion analysis. IEEE Transactions on Circuits and Systems for Video Technology, 20(7), 967–981.

    Article  Google Scholar 

  14. Pozueco, L., Paneda, X., Garcia, R., Melendi, D., & Cabrero, S. (2013). Adaptable system based on scalable video coding for high-quality video service. Computer and Electronics Engineering, 39(3), 775–789.

    Article  Google Scholar 

  15. Nafaa, A., & Taleb, T. (2007). Forward error correction strategies for media streaming over wireless networks. IEEE Communications Magazine, 46(1), 72–79.

    Article  Google Scholar 

  16. NS-2 Simulator. http://hpds.ee.ncku.edu.tw/smallko/ns2/ns2.htm

  17. Text of ISO/IEC 14496–4:2001/PDAM 19 Reference Software for SVC. (2007). Joint Video Team (JVT) of ISO-IEC MPEG & ITU-T VCEG, N9195.

  18. Elliott, E. (1965). A model of the switched telephone network for data communications. Bell System Technical Journal, 44(1), 89–109.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhoon Yim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, H., Yim, C. Scalable Video Transmission Over Wireless Networks Based on Loss Distribution and Layer Information. Wireless Pers Commun 83, 2013–2028 (2015). https://doi.org/10.1007/s11277-015-2500-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2500-5

Keywords

Navigation