Wireless Personal Communications

, Volume 83, Issue 3, pp 2013–2028 | Cite as

Scalable Video Transmission Over Wireless Networks Based on Loss Distribution and Layer Information

Article
  • 98 Downloads

Abstract

We propose an efficient scalable video transmission method using unequal forward error correction (FEC) scheme based on loss distribution and layer information. The actual packet loss rates over wireless networks are variable due to the clustered packet losses. First, we deduce the expected packet loss recovery rate from the estimation of the effective packet loss rate using loss distribution statistics. Second, layer-based distortion metric is presented including error propagation effects from hierarchical prediction structure in compressed scalable video packets. Third, the performance metric for FEC assignment is proposed from the layer-based distortion metric and the expected packet loss recovery rate. Finally, the FEC assignment algorithm is proposed for maximizing the performance metric. The proposed unequal FEC assignment method demonstrates robustness and significantly improved performance for scalable video transmission in various channel conditions compared to previous FEC assignment schemes.

Keywords

Scalable video coding Wireless networks Forward error correction Packet loss Error propagation 

References

  1. 1.
    Civanlar, M. R., Luthra, A., Wenger, S., & Zhu, W. (2001). Introduction to the special issue on streaming video. IEEE Transactions on Circuits and Systems for Video Technology, 11(3), 265–268.CrossRefGoogle Scholar
  2. 2.
    Darabkh, K. A., Awad, A. M., & Khalifeh, A. (2014). Efficient PFD-based networking and buffering models for improving video quality over congested links. Wireless Personal Communications. doi:10.1007/s1277-014-1857-1 Google Scholar
  3. 3.
    Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology, 17(9), 1103–1120.CrossRefGoogle Scholar
  4. 4.
    Schwarz, H., Marpe, D., & Wiegand, T. (2006). Analysis of hierarchical B pictures and MCTF. In Proceedings of ICME’06 (pp. 1929–1932).Google Scholar
  5. 5.
    Stuhlmuller, K., Farber, N., Link, M., & Girod, B. (2000). Analysis of video transmission over lossy channels. IEEE Journal on Selected Areas in Communications, 18(6), 1012–1032.CrossRefGoogle Scholar
  6. 6.
    Zhai, F., Eisenberg, Y., Pappas, T., Berry, R., & Katasaggelos, A. (2004). An integrated joint source-channel coding framework for video transmission over packet lossy networks. In ICIP’2004 (pp. 2531–2534).Google Scholar
  7. 7.
    Xiaokang, Y., Ce, Z., Zheng, L., Xiao, L., & Nam, L. (2005). An unequal packet loss resilience scheme for video over the Internet. IEEE Transactions on Multimedia, 7(4), 735–765.Google Scholar
  8. 8.
    Yu, X., Modestino, J., Kurceren, R., & Chan, Y. (2008). A model-based approach to evaluation of the efficacy of FEC coding in combating network packet losses. IEEE/ACM Transactions on Networking, 16(3), 628–641.CrossRefGoogle Scholar
  9. 9.
    Chaoub, A., & Ibn-Elhaj, E. (2013). Cross layer design for equal and unequal loss protection frameworks in cognitive radio networks. Computer and Electronics Engineering, 39(2), 571–581.CrossRefGoogle Scholar
  10. 10.
    Cheng, L., Zhang, W., & Chen, L. (2004). Rate-distortion optimized unequal loss protection for FGS compressed video. IEEE Transactions on Broadcasting, 50(2), 126–131.CrossRefGoogle Scholar
  11. 11.
    Wang, Y., Fang, T., Chau, L., & Yap, K. (2007). Two-dimensional channel coding scheme for MCTF-based scalable video coding. IEEE Transactions on Multimedia, 9(1), 37–45.CrossRefGoogle Scholar
  12. 12.
    Ha, H., & Yim, C. (2008). Layer-weighted unequal error protection for scalable video coding extension of H.264/AVC. IEEE Transactions on Consumer Electronics, 54(2), 736–744.CrossRefGoogle Scholar
  13. 13.
    Liu, J., Cho, Y., Guo, Z., & Kuo, C. (2010). Bit allocation for spatial scalability coding of H.264/SVC with dependent rate-distortion analysis. IEEE Transactions on Circuits and Systems for Video Technology, 20(7), 967–981.CrossRefGoogle Scholar
  14. 14.
    Pozueco, L., Paneda, X., Garcia, R., Melendi, D., & Cabrero, S. (2013). Adaptable system based on scalable video coding for high-quality video service. Computer and Electronics Engineering, 39(3), 775–789.CrossRefGoogle Scholar
  15. 15.
    Nafaa, A., & Taleb, T. (2007). Forward error correction strategies for media streaming over wireless networks. IEEE Communications Magazine, 46(1), 72–79.CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Text of ISO/IEC 14496–4:2001/PDAM 19 Reference Software for SVC. (2007). Joint Video Team (JVT) of ISO-IEC MPEG & ITU-T VCEG, N9195.Google Scholar
  18. 18.
    Elliott, E. (1965). A model of the switched telephone network for data communications. Bell System Technical Journal, 44(1), 89–109.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Information, Communication and Broadcasting EngineeringHalla UniversityWonjuKorea
  2. 2.Department of Internet and Multimedia EngineeringKonkuk UniversitySeoulKorea

Personalised recommendations