Skip to main content
Log in

The Adaptive Direction Selection Mechanism for Estimation Obstacle Areas in Smart Sensor Environments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We propose a cellular automat (CA) mechanism to form hole-like shapes with each of several sensor nodes equipped with a directional antenna called CACR-DOA. In the system, we use an adaptive beamformer that can receive useful signals and adjust receiving angles through direction-of-arrival (DOA) estimations. We analyze single sources and links with sensor nodes to form a path around a given hole’s margins. This work’s proposed mechanism uses different receiving angles to detect a single source, and through the source message, we can detect and determine the given hole’s margins. We use cognitive radio (CR) to estimate the energy of sensor nodes. We also propose energy consumption control via a game scheme to prolong sensor nodes’ lifetime. This innovative mechanism increases performance and convenience, and improves our ability to make rigorous calculations regarding environmental topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Li, M., Ding, L., Shao, Y., Zhang, Zhensheng, & Li, Bo. (2010). On reducing broadcast transmission cost and redundancy in ad hoc wireless networks using directional antennas. IEEE Transactions on Vehicular Technology, 59(3), 1433–1442.

    Article  Google Scholar 

  2. Rong, P., & Sichitiu, M. (2006). Angle of arrival localization for wireless sensor networks. 3rd Annual IEEE Communications Society on SECON, 1, 374–382.

    Google Scholar 

  3. Cartigny, J., Simplot-Ryl, D., & Stojmenovic, I. (2004). An adaptive localized scheme for energy-efficient broadcasting in ad hoc networks with directional antennas. Personal Wireless Communications, Lecture Notes in Computer Science, 3260, 399–413.

    Article  Google Scholar 

  4. Ramanathan, R., Redi, J., Santivanez, C., Wiggins, D., & Polit, S. (2005). Ad hoc networking with directional antennas: A complete system solution. IEEE Journal on Selected Areas in Communications, 23(3), 496–506.

    Article  Google Scholar 

  5. Hu, C., Hong, Y., & Hou, J. (2003). On mitigating the broadcast storm problem with directional antennas. In IEEE international communication conference, ICC (Vol. 1, pp. 104–110).

  6. Shen, C.-C., Huang, Z., & Jaikaeo, C. (2006). Directional broadcast for mobile ad hoc networks with percolation theory. IEEE Transactions on Mobile Computing, 5(4), 317–332.

    Article  Google Scholar 

  7. Lim, H., & Kim, C. (2000). Multicast tree construction and flooding in wireless ad hoc networks. In ACM MSWiM (pp. 61–68).

  8. Lou, W., & Wu, J. (2002). On reducing broadcast redundancy in ad hoc wireless networks. IEEE Transaction on Mobile Computing, 1(2), 111–122.

    Article  Google Scholar 

  9. Peng, W., & Lu, X. (2001). AHBP: An efficient broadcast protocol for mobile ad hoc networks. Journal of Computer Science and Technology, 16(2), 114–125.

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhao, F., & Guibas, L. (2004). Wireless sensor networks: An information processing approach. Amsterdam: Elsevier.

    Google Scholar 

  11. Karl, H., & Willig, A. (2005). Protocols and architectures for wireless sensor networks. London: Wiley.

    Book  Google Scholar 

  12. Bulusu, N., Heidemann, J., Estrin, D. (2000). GPS-less low cost outdoor localization for very small devices. IEEE Personal Communication Magazine, 7(5), 28–34.

  13. Carus, A., Urpi, A., Chessa, S., & De, S. (2005). GPS-free coordinate assignment and routing in wireless sensor networks. In 24th IEEE Computer Communication Societies (INFOCOM) (Vol. 1, pp. 150–160).

  14. Li, J., Jannotti, J., De Couto, D., Karger, D., & Morris, R. (2000). A scalable location service for geographic ad-hoc routing. In Proceedings of Mobicom.

  15. Rao, A., Papadimitriou, C., Shenker, S., & Stoica, I. (2003). Geographic routing without location information. In Proceedings of Mobicom.

  16. Fonseca, R., Ratnasamy, S., Culler, D., Shenker, S., & Stoica, I. (2004). Beacon vector routing: Scalable point-to-point in wireless sensornets (Vol. 12). Berkeley: Intel Research, IRB-TR-04.

    Google Scholar 

  17. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings ACM MobiCom (pp. 243–254).

  18. Yu, Y., Estrin, D., & Govindan, R. (2001). Geographical and energy-aware routing: A recursive data dissemination protocol for wireless sensor networks. UCLA Computer Science Department Technical Report (pp. 1–11), Los Angeles: University of California.

  19. Yu, F., Choi, Y., Park, S., Lee, E., Tian, Y., & Kim, S. (2007). An edge nodes energy efficient hole modeling in wireless sensor networks. In IEEE global telecommunications conference (GLOBECOM) (pp. 4724–4728).

  20. Missoum, S., Gürdal, Z., & Setoodeh, S. (2005). Study of a new local update scheme for cellular automata in structural design. Structural and Multidisciplinary Optimization, 29(2), 103–112. doi:10.1007/s00158-004-0464-2.

    Article  Google Scholar 

  21. Mamei, M., Roli, A., & Zambonelli, F. (2005). Emergence and control of macro-spatial structures in perturbed cellular automata, and implications for pervasive computing systems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 35(3), 337–348.

    Article  Google Scholar 

  22. Cheng, S. T., Horng, G. J., & Wang, C. H. (2013). Using direction of arrival to estimate obstacle areas in cognitive sensor environments. Wireless Personal Communications, 69(1), 269–284.

    Article  Google Scholar 

  23. Poor, H. V. (1994). An introduction to signal detection and estimation (2nd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  24. Filar, J. A., & Vrieze, K. (1997). Competitive Markov decision processes. New York: Springer.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwo-Jiun Horng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horng, GJ. The Adaptive Direction Selection Mechanism for Estimation Obstacle Areas in Smart Sensor Environments. Wireless Pers Commun 83, 1531–1547 (2015). https://doi.org/10.1007/s11277-015-2462-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2462-7

Keywords

Navigation