Skip to main content
Log in

A Double Pulse MIMO Frequency Diverse Array Radar for Improved Range-Angle Localization of Target

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we have proposed a double pulse multiple input multiple output–frequency diverse array (MIMO–FDA) radar to improve the range-angle localization of the target. Although frequency diverse array (FDA) radar has been widely used to generate both range and angle dependent beamforming, however, it is difficult for FDA to localize the target in both dimensions due to strong coupling of range and angle dimension. To overcome this inability of FDA radar, a double pulse based MIMO–FDA has been presented here. MIMO–FDA can be obtained by partitioning of FDA transmit array into subarrays and then transmit a unique waveform from each subarray. The resultant MIMO–FDA radar will send a pulse with zero frequency increment to locate the target in angle dimension, which is followed by a pulse with suitable frequency increment to locate the target in range dimension. Using the MIMO–FDA radar with double pulse method has improved the range-angle localization of the target. Simulations and results have verified the effectiveness of the proposed radar. The Cramer Rao lower bound for the proposed radar has also been derived and compared with the double pulse FDA radar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bandiera, F., Mancino, M., & Ricci, G. (2012). Localization strategies for multiple point-like radar targets. IEEE Transactions on Signal Processing, 60(12), 6708–6712.

    Article  MathSciNet  Google Scholar 

  2. Haykin, S., Litva, J., & Shepherd, T. J. (1993). Radar array processing. New York: Springer.

    Book  Google Scholar 

  3. Zrnic, D. S., Zhang, G., & Doviak, R. J. (2010). Bias correction and Doppler measurement for polarimetric phased-array radar. IEEE Transactions on Geoscience and Remote Sensing, 49(2), 843–853.

    Article  Google Scholar 

  4. Bai, Y. Y., Xiao, S. Q., Tang, M. C., Ding, Z. F., & Wang, B. Z. (2011). Wide angle scanning phased array with pattern reconfigurable elements. IEEE Transactions on Antennas and Propagation, 59(11), 4071–4076.

    Article  Google Scholar 

  5. Li, J., & Stoica, P. (2007). MIMO radar with colocated antennas. IEEE Transactions on Signal Processing Magazine, 24(5), 106–114.

    Article  Google Scholar 

  6. Aittomäki, T., & Koivunen, V. (2007). Signal covariance matrix optimization for transmit beamforming in MIMO radars. Proceedings of Asilomar conference on signals, systems and computing.

  7. Ahmed, S., Thompson, J. S., Petillot, Y. R., & Mulgrew, B. (2011). Unconstrained synthesis of covariance matrix for MIMO radar transmit beampattern. IEEE Transactions on Signal Processing, 59(8), 3837–3849.

    Article  MathSciNet  Google Scholar 

  8. Naghibi, T., & Behnia, F. (2011). MIMO radar waveform design in the presence of clutter. IEEE Transactions on Aerospace and Electronic Systems, 47(2), 770–781.

    Article  Google Scholar 

  9. Grossi, E., Lops, M., & Venturino, L. (2011). Robust waveform design for MIMO radars. IEEE Transactions on Signal Processing, 59(7), 3262–3271.

    Article  MathSciNet  Google Scholar 

  10. Li, J., & Zhang, X. (2011). Closed-form blind 2D-DOD and 2D-DOA estimation for MIMO radar with arbitrary arrays. Wireless Personal Communications, 69(1), 175–186.

    Article  Google Scholar 

  11. Chen, H., Li, X., & Zhuang, Z. (2012). Antenna geometry conditions for MIMO radar with uncoupled direction estimation. IEEE Transactions on Antennas Propagation, 60(7), 3455–3465.

    Article  MathSciNet  Google Scholar 

  12. Hua, G., & Abeysekera, S. S. (2013). Receiver design for range and Doppler sidelobe suppression using MIMO and phased-array radar. IEEE Transaction on Signal Processing, 61(6), 1315–1326.

    Article  MathSciNet  Google Scholar 

  13. Zhuang, L., & Liu, X. Z. (2009). Application of frequency diversity to suppress grating lobes in coherent MIMO radar with separated subapertures. EURASIP Journal of Advances in Signal Processing, 2009, 1–10.

  14. Shanbhag, K. V., Deb, D., & Kulkarni, M. (2010). MIMO radar with spatial frequency diversity for improved detection performance. Proceedings of IEEE international communication, control computing technology. Conference, Nagercoil.

  15. Antonik, P., Wicks, M. C., Griffiths, H. D., & Baker, C. J. (2006). Frequency diverse array radars. Proceedings of IEEE radar conference.

  16. Antonik, P., Wicks, M. C., Griffiths, H. D., & Baker, C. J. (2006). Multi-mission multi-mode waveform diversity. Proceedings of IEEE radar conference.

  17. Antonik, P., Wicks, M. C., Griffiths, H. D., & Baker, C. J. (2006). Range dependent beamforming using element level waveform diversity. Proceedings of international waveform diversity design conference.

  18. Secmen, M., Demir, S., Hizal, A., & Eker, T. (2007). Frequency diverse array antenna with periodic time modulated pattern in range and angle. IEEE conference on radar.

  19. Huang, S., Tong, K. F., & Baker, C. J. (2008). Frequency diverse array with beam scanning feature. Proceedings of IEEE antennas propagation. Conference.

  20. Jung, B. W., Adve, R. S., & Chun, J. (2008). Frequency diversity in multistatic radars. Proceedings of IEEE radar conference.

  21. Wang, W., Shao, H., & Cai1, J. (2012). Range-angle-dependent beamforming by frequency diverse array antenna. International journal of antennas and propagation, Article ID 760489.

  22. Wang, W., & Shao, H. (2014). Range-angle localization of targets by a double-pulse frequency diverse array radar. IEEE Journal on Selected Topics in Signal Processing, 8(1), 106–114.

    Article  Google Scholar 

  23. Sammartino, P. F., Griffiths, H. D., & Baker, C. J. (2013). Frequency diverse MIMO techniques for radar. IEEE Transactions on Aerospace and Electronic Systems, 49(1), 201–222.

    Article  Google Scholar 

  24. Wang, W. (2013). Phased-MIMO radar with frequency diversity for range-dependent beamforming. IEEE Sensor Journal, 3, 1320–1328.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasim Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, W., Qureshi, I.M., Basit, A. et al. A Double Pulse MIMO Frequency Diverse Array Radar for Improved Range-Angle Localization of Target. Wireless Pers Commun 82, 2199–2213 (2015). https://doi.org/10.1007/s11277-015-2342-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2342-1

Keywords

Navigation