Skip to main content
Log in

A Closed Form Estimate of TVWS Capacity Under the Impact of an Aggregate Interference

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Radio spectrum is a necessary barrier for flourishing of economic activities through provision of wireless services. The radio spectrum suitable for the propagation of wireless signals is a limited resource and hence requires optimal allocation as collectively dictated by regulatory, technical and market domains. The current global move to switch from analogue to digital TV has opened up an opportunity for the re-allocation of this valuable resource. In one way, spectrum bands once used for analogue TV broadcasting will be completely cleared, leaving a space for deploying new licensed wireless services, and in another way, digital television technology geographically interleaves spectrum bands to avoid interference between neighboring stations—leaving a space for deploying new unlicensed wireless services. The focus of the paper is to assess the availability of geographically interleaved spectrum, also known as television spectrum white spaces (TVWS). The focus of this paper is to asses the potential of deploying white space devices to meet broadband needs in rural India. The main contribution of this paper is a closed form estimate of the average white capacity under the influence of an aggregate interference from other secondary devices. Also, simulations over a representative terrain considering Federal Communications Committee rules and aggregate interference, conclude that, when Digital Television is introduced there could still be approximately 6.14 Mbps of average TVWS personal capacity available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  2. Menon, R., Bnehrar, R. M., & Reed, J. H. (2000, November). On the impact of dynamic spectrum sharing on legacy radio systems. IEEE Transactions on Wireless Communications, 7(11), 4198–4207

  3. Zhao, Y., Lizdabel M., Gaeddert J., Bae K. K., Um J. S., & Reed, J. H. (2007). Applying radio environment maps to cognitive wireless regional area networks. In 2nd IEEE international symposium on new Frontiers in dynamic spectrum access networks, 2007. DySPAN 2007, April 17–20, pp. 115–118.

  4. Commission to the European Parliament. (2007). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, reaping the full benefits of the digital dividend in Europe: A common approach to the use of the spectrum released by the digital switchover, com (2007) 700.

  5. Henten, A., Tadayoni, R., & Windekilde, I. (2010, June). Spectrum war the battle for the digital dividend spectrum, pp. 28–30.

  6. Tandra, R., Mishra, S. M., & Sahai, A. (2009, May). What is a spectrum hole and what does it take to recognize one? Proceedings of the IEEE, 97(5), 824–848

  7. Markis, D., Gardikis, G., & Kourtis, A. (2012). Tv white space capacity: A geolocation-based approach. IEEE Communications Magzine: Topics in Radio Communications, 50(9), 145–152.

    Article  Google Scholar 

  8. Masonta, M., Haddad, Y., De Nardis, L., Kliks, A., & Holland, O. (2012, September). Energy efficiency in future wireless networks: Cognitive radio standardization requirements. In 2012 IEEE 17th internatioal workshop on computer aided modeling and design of communication links —’CAMAD’, pp. 31–35.

  9. Zander, J., Sung, K. W., Nekovee, M., Kronander, J., Kim, S. L., & Achtzehn, A. (2010). QUASAR scenarios for white space assessments and exploitation. URSI EMC Europe conference. Wroclaw, Poland, pp. 13–17.

  10. Harrison, K., Mishra, S.M., & Sahai, A. (2010, April). How much white-space capacity is there? In IEEE international symposium on dynamic access networks (DySPAN)2010, Singapore.

  11. Kawade, S. & Nekovee, M. (2011). Broadband wireless delivery using an inside-out tv white space network architecture. In Proceedings of IEEE global telecommunications conference (GLOBECOM 2011), pp. 1–6, December 5–9, 2011.

  12. Pejovic, V., Johnson, D. L., Zheleva, M., Belding, E. M., & Lysko, A. (2014, January). Villagelink: Wide-area wireless coverage. In 6th international conference on communications systems and networks (COMSNETS 2014), Bangalore, India, pp. 7–10.

  13. Dudda, T., & Irnich, T. (2012). Capacity of cellular networks deployed in tv white space. In IEEE international symposium on dynamic spectrum access networks (DYSPAN), 2012, Bellevue, WA, pp. 254–265, October 16–19.

  14. Jantti, R., Keruttula, J., Koufos, K., & Ruttik, K. (2011). Aggregate interference with FCC and ECC white space usage rules: Case study in Finland, pp. 599–602, May 3–6.

  15. Nekovee, M., & Ispwich. (2009, June). Quantifying the availability of TV white spaces for cognitive radio operation in the UK, pp. 1–5. In IEEE conference on communication workshops 2009, ICC workshops 2009, pp. 14–18.

  16. Naik, G., Singhal, S., Kumar, A., & Karandikar, A. (2014). Quantitative assessment of TV white space in India. In Proceedings of IEEE NCC 2014, pp. 1–6, Feb. 28 2014–March 2 2014.

  17. Govt. of India Dept. of Telecom. National frequency allocation plan of India (NFAP). Technical report, 2011.

  18. Telecom Regulatory Authority of India Consultation paper on Issues relating Mobile Television Services, 9/2007.

  19. Deshmukh, M., Patil, K., Frederiksen, F. B., Skouby, K., & Prasad, R. (2010). Wireless broadband network on TVWS for rural areas: An Indian perspective. In 16th international symposium on wireless personal multimedia communications (WPMC), pp. 1–5, June 24–27, 2013.

  20. Hong, X., Wang, C.-X., Thompson, J. (2012). Interference modeling of cognitive radio networks. In Vehicular Technology Conference, 2008. VTC Spring 2008. IEEE. pp. 1851–1855, 11–14 May 2008. doi:10.1109/VETECS.2008.421.

  21. Ganti, R., & Hangi, M. A. (2008, March). Interference in large wireless networks. In Foundations and trends in networking, (vol. 3, pp. 127–248).

  22. Baccelli, F., & Blaszczyszyn, B. (2009, December). Stochastic geometry and wireless networks. In Applications, INRIA and Ecole normale superieure, vol. 2, 45.

  23. Office of the Registrar General and Census Commissioner, Ministery of Home Affairs, Govt. of India Census 2011 of India. http://censusindia.gov.in/Census_And_You/area_and_population.aspx

Download references

Acknowledgments

First author Madhukar Deshmukh would like to acknowledge the immense help and guidance provided by Prof. Abhay Karandikar, Department of Electrical Engineering, IIT, Bombay, India for accomplishing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhukar Deshmukh.

Appendix

Appendix

1.1 Case I

Without considering fading on CR transmit channels and considering the interference from CRs spree over large area i.e. \(r_{\textit{max}}\rightarrow \infty \) in the model. Power control at CR node is not employed and nominal transmit power is \( P_{c(nom)}=1\)

$$\begin{aligned} {\mathcal {L}}_{I_{0}}(s)= {\mathbb {E}}_{\varPhi }\prod _{x\in \varPhi \setminus A_{\textit{max}}} {\mathbb {E}}_{h}\bigg [{\textit{exp}}(- sh_{c} P_{c(nom)}\parallel x\parallel ^{-\alpha }) \bigg ] \end{aligned}$$
(41)

for non fading case expectation over fading process is not considered.

$$\begin{aligned} {\mathcal {L}}_{I_{0}}(s)= {\mathbb {E}}\prod _{x\in \varPhi \setminus A_{\textit{max}}} {\mathbb {E}} {\textit{exp}}(-sx^{-\alpha })= {\textit{exp}}\left\{ - \int ^{r_{\textit{max}}}_{0} 1-{\textit{exp}}(-sx^{-\alpha })\lambda '(x)dx\right\} \end{aligned}$$
(42)

where, \(\lambda '(x)= \lambda A\).

  • A is area of unit circle: \(A=\pi \)

  • \(= {\textit{exp}}\bigg \{-\pi \lambda \int ^{r_{\textit{max}}}_{0} 1-{\textit{exp}}(-sx^{-\alpha })dx\bigg \}\)

  • Substituting \(x\rightarrow x^{1/2}\)

  • \(= {\textit{exp}}\bigg \{-\pi \lambda \int ^{r_{\textit{max}}}_{0} 1-{\textit{exp}}(-sx^{-\alpha /2})dx\bigg \}\)

  • \(={\textit{exp}}\bigg \{-\pi \lambda \int ^{r_{\textit{max}}}_{0} 1-{\textit{exp}}(-s(x^{-1})^{\alpha /2})dx\bigg \}\)

  • Substituting \(x^{\alpha /2}\longrightarrow r\)

  • \(x=r^{2/\alpha }\)

  • \(dx=dr\cdot 2/\alpha r^{2/\alpha -1}\)

    $$\begin{aligned} {\mathcal {L}}_{I_{0}}(s)= {\textit{exp}}\left\{ -\pi \lambda \int ^{r_{\textit{max}}}_{0} 1-{\textit{exp}}(-s/r)^{2/\alpha }r^{(2/\alpha ) -1})dr\right\} \end{aligned}$$
    (43)
  • Let \(\eta =2/\alpha \)

    $$\begin{aligned} {\mathcal {L}}_{I_{0}}(s)= {\textit{exp}}\underbrace{\bigg \{-\pi \lambda \int ^{r_{\textit{max}}}_{0} 1-{\textit{exp}}(-s/r)\eta r^{\eta -1}dr\bigg \}}_{{\textit{Term}} T_{I}} \end{aligned}$$
    (44)

Solving for the integral Term \(T_{I}\), \(T_{I}=\int _{0}^{r_{\textit{max}}}1-{\textit{exp}}(-s/r)\eta r^{\eta -1}dr\), for the interference from large CR network: Let \(r_{\textit{max}}\rightarrow \infty \) \(T_{I} = \lim _{r_{\textit{max}}\rightarrow \infty } \int _{0}^{r_{\textit{max}}}1-{\textit{exp}}(-s/r)\eta r^{\eta -1}dr\)

If R is random variable, It can be notted that the above integral is expected value \({\mathbb {E}}[((R/s)^{-1})^{n}]\) of an exponential random variable R with mean 1.

Since \({\mathbb {E}}[R^{P}]=\varGamma (1+P)\) from the definition of Gamma Function.

$$\begin{aligned} \varGamma (P) \triangleq \int _{0}^{\infty }x^{P-1}e^{-x}dx \end{aligned}$$
(45)

Then,

$$\begin{aligned} {\mathbb {E}}[((R/s)^{-1})^{n}T_{I}=\pi \lambda \eta s^{n}\varGamma (1-\eta ) \end{aligned}$$
(46)

It follows that, \({\mathcal {L}} _{I_{0}}={\textit{exp}}[-\pi \lambda \eta s^{n}\varGamma (1-\eta )]\) is the Laplace agreegate interference from large CR network to \(PR_{x}\). When fading is not considers on CR channels.

1.2 Case II

The fading on CR transmit channels is considered power control at CR transmitters is not considered.

$$\begin{aligned} {\mathcal {L}} _{I_{0}}(s)= {\mathbb {E}}\prod _{x\in \varPhi /A_{\textit{max}}} {\textit{exp}}(-s h_{c} \parallel x\parallel ^{-\lambda }) \end{aligned}$$
(47)

Since \(x\) and \(h_{c}\) are independent random variable due to independence of fading and point process. and the fact that,

$$\begin{aligned} {\mathcal {L}} _{I_{0}}(s)&= {\textit{exp}}\bigg \{-{\mathbb {E}}_{h} \underbrace{\int _{0}^{r_{\textit{max}}}1-{\textit{exp}}(-s h_{c} x^{-\lambda })\lambda '(x)dx}_{T_{\textit{II}}}\bigg \}\end{aligned}$$
(48)
$$\begin{aligned} T_{\textit{II}}&= \pi \lambda \int _{0}^{r_{\textit{max}}}1-{\textit{exp}}(-s h_{c} x^{-\lambda })\lambda '(x)dx \end{aligned}$$
(49)

From above equation, \(T_{\textit{II}}\) and \(r_{\textit{max}} \rightarrow \infty \) \(T_{\textit{II}} \lim _{r_{\textit{max}}} \rightarrow \infty \pi \lambda \int _{0}^{r_{\textit{max}}}1-{\textit{exp}}(-sh_{c}/r)\eta r^{\eta -1}dr\)

The above integral’s expected value is

$$\begin{aligned} T_{\textit{II}}[((R/sh_{c})^{-1})^{\eta }]={\mathbb {E}}[(sh_{c})^{\eta }\varGamma (1-\eta )] \end{aligned}$$
(50)

then

$$\begin{aligned} T_{\textit{II}}&= \pi \lambda {\mathbb {E}}(sh)^{\eta } \varGamma [1-\eta ]\end{aligned}$$
(51)
$$\begin{aligned}&= \pi \lambda {\mathbb {E}}[h^{\eta }] \varGamma [1-\eta ]s^{\eta } \end{aligned}$$
(52)

If Rayleigh fading is considered \({\mathbb {E}}[h^{\eta }] \varGamma [1-\eta ]\)

$$\begin{aligned} \therefore {\mathcal {L}} _{I_{0}}(s)={\textit{exp}}\bigg \{-\pi \lambda \varGamma (1-\eta )s^{\eta }\varGamma (1+\eta ) \bigg \} \end{aligned}$$
(53)

From the property of the Gamma function

$$\begin{aligned} \varGamma (1-\eta )\varGamma (1+\eta )&= \frac{\pi \eta }{\sin (\pi \eta )}\end{aligned}$$
(54)
$$\begin{aligned} \therefore {\mathcal {L}} _{I_{0}}(s)={\textit{exp}}\bigg \{-\pi \lambda \frac{\pi \eta s^{\eta }}{\sin (\pi \eta )}\bigg \}&= {\textit{exp}}\bigg (\frac{-\lambda \pi ^{2}\eta s^{0.5}}{\sin (\pi \eta )}\bigg ) \end{aligned}$$
(55)

1.3 Case III

For non fading case and finite CR network i.e. of radius \(r_{\textit{max}}\).

From \(T_{I}\)

$$\begin{aligned} {\mathcal {L}} _{I_{0}}(s)&= {\textit{exp}}\bigg \{-\pi \lambda \int _{0}^{r_{\textit{max}}}1-{\textit{exp}}(-s/r)\eta r^{\eta -1}dr\bigg \}\end{aligned}$$
(56)
$$\begin{aligned} {\mathcal {L}} _{I_{0}}(s)&= {\textit{exp}}\bigg \{-\pi \lambda \eta \underbrace{\int _{0}^{r_{\textit{max}}}1-{\textit{exp}}(-s/r) r^{\eta -1}dr}_{T_{\textit{III}}} \bigg \}\end{aligned}$$
(57)
$$\begin{aligned} T_{\textit{III}}&= \int _{0}^{r_{\textit{max}}}1-{\textit{exp}}(-s/r) r^{\eta -1}dr\end{aligned}$$
(58)
$$\begin{aligned}&= r_{\textit{max}}-\varGamma [(1-\eta ),s/r_{\textit{max}}]s^{(\eta -1)} \end{aligned}$$
(59)

then,

$$\begin{aligned} {\mathcal {L}} _{I_{0}}(s)={\textit{exp}}\bigg \{-\pi \lambda \eta r_{\textit{max}}-\varGamma [(1-\eta ),s/r_{\textit{max}}]s^{(\eta -1)}\bigg \} \end{aligned}$$
(60)

1.4 Case IV

For fading case and finite CR network.

$$\begin{aligned} {\mathcal {L}} _{I_{0}}(s)&= {\mathbb {E}}_{h}\bigg [{\textit{exp}}\bigg \{-\pi \lambda \int _{0}^{r_{\textit{max}}}1-{\textit{exp}}(-s/r)\eta r^{\eta -1}dr\bigg \}\bigg ]\end{aligned}$$
(61)
$$\begin{aligned} {\mathcal {L}} _{I_{0}}(s)&= {\textit{exp}}\bigg \{-\pi \lambda \eta \underbrace{\int _{0}^{r_{\textit{max}}}1-{\textit{exp}}(-s/r) r^{\eta -1}dr}_{T_{IV}}\bigg \}\end{aligned}$$
(62)
$$\begin{aligned} T_{IV}&= {\mathbb {E}}_{h}\bigg [\int _{0}^{r_{\textit{max}}} [1-{\textit{exp}}(-sh/r)]r^{-\eta -1}dr\bigg ] \end{aligned}$$
(63)

The above integral gives,

$$\begin{aligned} T_{IV}&= {\mathbb {E}}h_{c}^{\eta }\int _{0}^{r_{\textit{max}}}r^{\eta -1}\cdot e^{-r}dr\end{aligned}$$
(64)
$$\begin{aligned}&= \int _{0}^{r_{\textit{max}}}\bigg \{-\varGamma [(1-\eta )\cdot s/r_{\textit{max}}]s^{\eta -1}\bigg \}\end{aligned}$$
(65)
$$\begin{aligned} \therefore {\mathcal {L}} _{I_{0}}(s)&= {\textit{exp}}\bigg \{-\pi \lambda \eta {\mathbb {E}}_{h_{c}^{\eta }}\bigg \{r_{\textit{max}} -\varGamma [(1-\eta ), s/r_{\textit{max}}]s^{(\eta -1)}\bigg \} \end{aligned}$$
(66)

\(\varGamma [(1-\eta ),s/r_{\textit{max}}]s^{(\eta -1)}\)—incomplete Gamma function. For Rayleigh fading \({\mathbb {E}}_{h_{c}^{\eta }}=\varGamma (\eta )\),

$$\begin{aligned} {\mathcal {L}}_{I_{0}}(s)={\textit{exp}}\bigg \{-\pi \lambda \eta \varGamma (\eta ) r_{\textit{max}}-\varGamma [(1-\eta ),s/r_{\textit{max}}]s^{\eta -1}\bigg \} \end{aligned}$$
(67)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, M., Frederiksen, F.B. & Prasad, R. A Closed Form Estimate of TVWS Capacity Under the Impact of an Aggregate Interference. Wireless Pers Commun 82, 551–568 (2015). https://doi.org/10.1007/s11277-014-2240-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2240-y

Keywords

Navigation