Topology Control for Harvesting Enabled Wireless Sensor Networks: A Design Approach

Abstract

While there has been a lot of research on energy efficient topology control protocols destined for different applications, topology control has never been explored in the presence of harvesting enabled sensors. Largely, researchers in this domain have considered a fixed battery design. We argue that arrival of harvesting enabled sensors necessitates rethink of topology control. The objective of topology control in this context should not be to minimize the spent energy and maintain a reduced topology, but to maximize fault tolerance in the network and increase the sensing coverage region. In this work, we first describe a taxonomy of existing topology control schemes and analyze the impact of reduced topology over fault tolerance and sensing coverage. We then describe the necessity of new design parameters in the presence of harvest-able ambient energy. We also outline guiding principles for designing a harvesting enabled topology control scheme. To cater for whether such a scheme is feasible or not, an insight is also provided onto the solar energy availability from solar radiations for near perpetual operation—as an example of available ambient energy. Based on the insight gained from the solar radiations availability, we explain why new design parameters are required for performance measurement of harvesting enabled sensors. The mathematical and empirical findings reveal that the topology control strategies, which do not take into account harvesting opportunity, are unable to provide better results in terms of fault tolerance and sensing coverage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    A performance calculator for grid-connected PV systems. http://rredc.nrel.gov/solar/calculators/pvwatts/version1/.

  2. 2.

    Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, 30(14), 2826–2841.

    Article  Google Scholar 

  3. 3.

    Brust, M. R., Turgut, D., Ribeiro, C. H. C., & Kaiser, M. (2012) Is the clustering coefficient a measure for fault tolerance in wireless sensor networks? In communications (ICC), 2012 IEEE international conference on (pp. 183–187). IEEE.

  4. 4.

    Bucciarelli, L. L, Jr. (1984). Estimating loss-of-power probabilities of stand-alone photovoltaic solar energy systems. Solar Energy, 32(2), 205–209.

    Article  Google Scholar 

  5. 5.

    Cerpa, A., & Estrin, D. (2004). ASCENT: Adaptive self-configuring sensor networks topologies. IEEE Transactions on Mobile Computing, 3(3), 272–285.

    Article  Google Scholar 

  6. 6.

    Cytoscape. http://www.cytoscape.org/.

  7. 7.

    Doost, R., Chowdhury, K. R., & Di Felice, M. (2010). Routing and link layer protocol design for sensor networks with wireless energy transfer. In Global telecommunications conference (GLOBECOM 2010), 2010 IEEE (pp. 1–5). IEEE.

  8. 8.

    Esram, T., & Chapman, P. L. (2007). Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion, 22(2), 439–449.

    Article  Google Scholar 

  9. 9.

    Fiaz, M., Yousaf, R., Hanfi, M., Asif, W., Qureshi, H. K., & Rajarajan, M. (2013). Adding the reliability on tree based topology construction algorithms for wireless sensor networks. Wireless Personal Communications 74(2), 989–1004.

  10. 10.

    Gaudette, B., Hanumaiah, V., Vrudhula, S., & Krunz, M. (2012). Optimal range assignment in solar powered active wireless sensor networks. In INFOCOM, 2012 proceedings IEEE (pp. 2354–2362). IEEE.

  11. 11.

    Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.

    Article  MATH  MathSciNet  Google Scholar 

  12. 12.

    Han, S.-W., Jeong, I.-S., & Kang, S.-H. (2012). Low latency and energy efficient routing tree for wireless sensor networks with multiple mobile sinks. Journal of Network and Computer Applications 36(1), 156–166.

  13. 13.

    Hao, X.-C., Zhang, Y.-X., Jia, N., & Liu, B. (2013). Virtual game-based energy balanced topology control algorithm for wireless sensor networks. Wireless Personal Communications 69(4), 1289–1308.

  14. 14.

    Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In System sciences, 2000. Proceedings of the 33rd annual Hawaii international conference on, 10 pp. IEEE.

  15. 15.

    Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  16. 16.

    Iannello, F., Simeone, O., & Spagnolini, U. (2010). Dynamic framed-aloha for energy-constrained wireless sensor networks with energy harvesting. In Global telecommunications conference (GLOBECOM 2010), 2010 IEEE (pp. 1–6). IEEE.

  17. 17.

    Iannello, F., Simeone, O., & Spagnolini, U. (2012). Medium access control protocols for wireless sensor networks with energy harvesting. IEEE Transactions on Communications, 60(5), 1381–1389.

    Article  Google Scholar 

  18. 18.

    Johnson, D. B., Maltz, D. A., Broch, J., et al. (2001). DSR: The dynamic source routing protocol for multi-hop wireless ad hoc networks. Ad hoc Networking, 5, 139–172.

    Google Scholar 

  19. 19.

    Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 6(4), 32.

    Article  Google Scholar 

  20. 20.

    Labrador, M. A., & Wightman, P. M. (2009). Topology control in wireless sensor networks: With a companion simulation tool for teaching and research. Berlin: Springer.

    Google Scholar 

  21. 21.

    Lee, C.-Y., Shiu, L.-C., Lin, F.-T., & Yang, C.-S. (2013). Distributed topology control algorithm on broadcasting in wireless sensor network. Journal of Network and Computer Applications 36(4), 1186–1195.

  22. 22.

    Li, L., & Halpern, J. Y. (2001). Minimum-energy mobile wireless networks revisited. In Communications, 2001. ICC 2001. IEEE international conference on (Vol. 1, pp. 278–283). IEEE.

  23. 23.

    Li, L., & Halpern, J. Y. (2004). A minimum-energy path-preserving topology-control algorithm. IEEE Transactions on Wireless Communications, 3(3), 910–921.

    Article  Google Scholar 

  24. 24.

    Liu, Y., Ren, A., Sun, D., & Wang, A. (2013). A proactive maintaining algorithm for dynamic topology control in wireless sensor networks. Computers & Electrical Engineering 39(6), 1767–1778.

  25. 25.

    Marsan, M. A., Bucalo, G., Di Caro, A., Meo, M., & Zhang, Y. (2013). Towards zero grid electricity networking: Powering bss with renewable energy sources. In 10th Italian networking workshop (pp. 9–11).

  26. 26.

    Matlab 2012b. http://www.mathworks.com/matlabcentral/answers/.

  27. 27.

    MEMSIC Inc, Memsic wireless modules. http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html

  28. 28.

    Narayanaswamy, S., Kawadia, V., Sreenivas, R. S., & Kumar, P. R. (2002). Power control in ad-hoc networks: Theory, architecture, algorithm and implementation of the compow protocol. In European wireless conference, Vol. 2002. Florence, Italy.

  29. 29.

    Nintanavongsa, P., Naderi, M. Y., & Chowdhury, K. R. (2013). Medium access control protocol design for sensors powered by wireless energy transfer. In IEEE INFOCOM-mini conference.

  30. 30.

    Qureshi, H. K., Rizvi, S., Saleem, M., Khayam, S. A., Rakocevic, V., & Rajarajan, Muttukrishnan. (2011). Poly: A reliable and energy efficient topology control protocol for wireless sensor networks. Computer Communications, 34(10), 1235–1242.

    Article  Google Scholar 

  31. 31.

    Rahimi, M., Shah, H., Sukhatme, G. S., Heideman, J., & Estrin, D. (2003). Studying the feasibility of energy harvesting in a mobile sensor network. In Robotics and automation, 2003. Proceedings. ICRA’03. IEEE international conference on (Vol. 1, pp. 19–24). IEEE.

  32. 32.

    Rizvi, S., Qureshi, H. K., Khayam, S. A., Rakocevic, V., & Rajarajan, M. (2012). A1: An energy efficient topology control algorithm for connected area coverage in wireless sensor networks. Journal of Network and Computer Applications, 35(2), 597–605.

    Article  Google Scholar 

  33. 33.

    Rodoplu, V., & Meng, T. H. (1999). Minimum energy mobile wireless networks. IEEE Journal on Selected Areas in Communications, 17(8), 1333–1344.

    Article  Google Scholar 

  34. 34.

    Shi, Y., Xie, L., Hou, Y. T., & Sherali, H. D. (2011). On renewable sensor networks with wireless energy transfer. In INFOCOM, 2011 proceedings IEEE (pp. 1350–1358). IEEE.

  35. 35.

    Smys, S., & Josemin Bala, G. (2012). Stab-WIN: Self organized, topology control ability backbone node in wireless networks. Wireless Personal Communications, 63(3), 529–548.

    Article  Google Scholar 

  36. 36.

    Tong, B., Li, Z., Wang, G., & Zhang, W. (2009). On demand node reclamation and replacement for guaranteed area coverage in long-lived sensor networks. In Quality of service in heterogeneous networks (pp. 148–166). Springer.

  37. 37.

    Torkestani, J. A. (2013). An energy-efficient topology construction algorithm for wireless sensor networks. Computer Networks 57(7), 1714–1725.

  38. 38.

    Wang, F., Thai, M. T., & Du, D.-Z. (2009). On the construction of 2-connected virtual backbone in wireless networks. IEEE Transactions on Wireless Communications, 8(3), 1230–1237.

    Article  Google Scholar 

  39. 39.

    Watfa, M., AlHassanieh, H., & Selman, S. (2011). Multi-hop wireless energy transfer in wsns. IEEE Communications Letters, 15(12), 1275–1277.

  40. 40.

    Wightman, P. M., & Labrador, M. A. (2008). A3: A topology construction algorithm for wireless sensor networks. In Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE (pp. 1–6). IEEE.

  41. 41.

    Wightman, P. M., & Labrador, M. A. (2009). Topology maintenance: Extending the lifetime of wireless sensor networks. In Latin-American conference on communications, LATINCOM’09 (pp. 1–6). IEEE.

  42. 42.

    World Radiation Data Base. http://wrdc.mgo.rssi.ru/ and NERL Solar Radiation Research Laboratory. http://www.nrel.gov/midc/srrl.

  43. 43.

    Wu, J., Gao, M., & Stojmenovic, I. (2001). On calculating power-aware connected dominating sets for efficient routing in ad hoc wireless networks. In Parallel processing, international conference on, 2001 (pp. 346–354). IEEE.

  44. 44.

    Wu, J., Cardei, M., Dai, F., & Yang, S. (2006). Extended dominating set and its applications in ad hoc networks using cooperative communication. IEEE Transactions on Parallel and Distributed Systems, 17(8), 851–864.

    Article  Google Scholar 

  45. 45.

    Yin, R., Hao, X., & Liu, B. (2011). An energy efficient topology maintenance scheme for wireless sensor networks. Journal of Information & Computational Science 8(13), 2815–2822.

  46. 46.

    Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.

    Article  Google Scholar 

  47. 47.

    Yuanyuan, Z., Jia, X., & Yanxiang, H. (2006). Energy efficient distributed connected dominating sets construction in wireless sensor networks. In Proceedings of the 2006 international conference on Wireless communications and mobile computing (pp. 797–802). ACM.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Waqar Asif.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qureshi, H.K., Iqbal, A. & Asif, W. Topology Control for Harvesting Enabled Wireless Sensor Networks: A Design Approach. Wireless Pers Commun 82, 81–101 (2015). https://doi.org/10.1007/s11277-014-2195-z

Download citation

Keywords

  • Topology construction
  • Topology maintenance
  • Energy harvesting
  • Sensor network