Skip to main content
Log in

Travel Recommendation Using Geo-tagged Photos in Social Media for Tourist

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript


In recent years, million geo-tagged photos are available in online web service like Flickr, panoramio, etc. People contributing geo-tagged photo and share their travel experiences these media. The photo itself has important information sharing reveals like location, time, tags, title, and weather. We recommend the new method locations travel for tourists according their time and their preference. We get travel user preference according his/her past time in one city and recommendation another city. We examine our technique collect dataset from Flickr publically available and taken different cities of china. Experiment results show that our travel recommendation method according to tourist time capable to predict tourist location recommendation famous places or new places more precise and give better recommendation compare to state of art landmarks recommendation method and personalized travel method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Crandall, D., Backstrom, L., Huttenlocher, D., & Kleinberg, J. (2009). Mapping the world’s photos. In Proceedings of the international conference on World Wide Web (WWW 09) (pp. 761–770), ACM. doi:10.1145/1526709.1526812.

  2. Zheng, Y.-T., Zha, Z.-J., & Engua, T.-S. (2011). Research and applications ongeo-referenced multimedia: A survey. Multimedia Tools and Applications, 51, 77–98.

  3. Lee, I., Cai, G., & Lee, K. (2014). Exploration of geo-tagged photos through data mining approaches. International Journal Expert Systems with Applications, 41, 397–405.

    Article  Google Scholar 

  4. Huang, Y.-T., Chen, K.-T., Hsieh, L.-C., Hsu, W. H., & Su, Y.-F. (2012). Detecting the directions of viewing landmarks for recommendation by large-scale user-contributed photos. In MM’12 (pp. 997–1000), October 29–November 2, Nara, Japan.

  5. Han, Y. (2013). Recognize objectswith three kinds of information in landmarks. Pattern Recognition, 46, 2860–2873.

    Article  Google Scholar 

  6. Kennedy, L. S., & Naaman, M. (2008). Generating diverseand representative image search results for landmarks. In WWW ’08: Proceeding of the 17th international conference on World Wide Web (pp. 297–306). New York, NY, USA: ACM.

  7. Joshi, D., & Luo, J. (2008). Inferring generic activities and events from image content and bags of geo-tags. In CIVR’08, July 7–9. Niagara Falls, ON, Canada: ACM.

  8. Zheng, Y., & Xie, X. (2011). Learning travel recommendations from user-generated gps traces. ACM Transactions on Intelligent Systems and Technology, 2(1), Article 2.

  9. Zheng, V. W., Zheng, Y., Xie, X., & Yang, Q. (2010). Collaborative location and activity recommendations with gps history data. In WWW ’10: Proceeding of the 19th international conference on World Wide Web (p. 10). New York, NY, USA: ACM.

  10. Serdyukov, P., Murdock, V., & van Zwol, R. (2009). Placing flickr photos on a map. In SIGIR ’09: Proceedings of the 32nd international ACM SIGIR conference on research and development in information retrieval (pp. 484–491). New York, NY, USA: ACM. (Online). doi:10.1145/1571941.1572025

  11. Chen, W.-C., et al. (2009). Visual summaries of popular landmarks from community photo collections. In Proceedings of the 17th ACM international conference on multimedia (pp. 789–792), Beijing, China: ACM Press.

  12. Hays, J., & Efros, A. A. (2008). IM2GPS: Estimating geographic information from a single image. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR 2008) (pp. 1–8). IEEE Press. doi:10.1109/CVPR.2008.4587784.

  13. Adrian, P., & Gregory, G. (2009). Deducing trip related information from flickr. In Proceedings of the international conference on World Wide Web (WWW 09) (pp. 1183–1184), ACM. doi:10.1145/1526709.1526919.

  14. Sun, Y., et al. (2013). Road-based travel recommendation using geo-tagged images. Computers, Environment and Urban Systems. doi:10.1016/j.compenvurbsys.2013.07.006.

  15. Clements, M., Serdyukov, P., Vries, A., & Reinders, M. (2010). Using flickrgeotags to predict user travel behaviour. In F. Crestani, S. Marchand-Maillet, H. H. Chen, E. N. Efthimiadis, & J. Savoy (Eds.), Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval, 19–23 July 2010.

  16. Yin, Z., Cao, L., Han, J., Luo, J., & Huang, T. S. (2011). Diversified trajectory pattern ranking in geo-tagged social media. In Proceedings of the SIAM conference on data mining (SDM 2011) (pp. 980–991), SIAM/Omnipress.

  17. Majid, A., Chen, L., Chen, G., Mirza, H. T., Hussain, I., & Woodward, J. (2012). A context-aware personalized travel recommendation system based on geotagged social media data mining. International Journal of Geographical Information Science, 27(4), 662–684.

    Article  Google Scholar 

  18. Jiangn, K., Yin, H., Wang, P., & Yu, N. (2013). Learning from contextual information of geo-tagged web photos to rank personalized tourism attractions. Neurocomputing, 119, 17–25.

    Article  Google Scholar 

  19. Bao, J, Zheng, Y., & Mokbel, M. F. (2012). Location-based and preference-aware recommendation using sparse geo-social networking data. In ACM SIGSPATIAL GIS’12 November 6–9, 2012, Redondo Beach, CA, USA.

  20. Huang, Y., & Bian, L. (2009). A Bayesian network and analytic hierarchy process based personalized recommendations for tourist attractions over the Internet. Expert Systems with Applications, 36(2009), 933–943.

    Article  Google Scholar 

  21. Ester, M., Kriegel, H., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large patial databases with noise. In Proceedings of the international conference on knowledge discovery and data mining (KDD 96) (pp. 226–231), AAAI Press.

  22. Zheng, Y., Zhang, L., Xie, X., & Ma, W. Y. (2009). Mining interesting locations and travel sequences from gps trajectories. In WWW ’09: Proceedings of the 18th international conference on World wide web (pp. 791–800). New York, NY, USA: ACM. (Online). doi:10.1145/1526709.1526816

  23. Majid, A., Chen, L., Chen, G., Mirza, H. T., & Hussain, I. (2012). GoThere: Travel suggestions using geotagged photos. In WWW 2012 companion, April 16–20, 2012. Lyon, France: ACM. 978-1-4503-1230-1/12/04.

  24. Das, A. S., Datar, M., Garg, A., & Rajaram, S. (2007). Google news personalization: Scalable online collaborative ltering. In WWW ’07, ACM.

  25. Wang, S., Sun, J., Gao, B. J., & Ma, J. (2012). VSRank: A novel framework for ranking-based collaborative filtering. In Proceedings of the 21st ACM international conference on information and knowledge management (CIKM).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Abdul Majid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memon, I., Chen, L., Majid, A. et al. Travel Recommendation Using Geo-tagged Photos in Social Media for Tourist. Wireless Pers Commun 80, 1347–1362 (2015).

Download citation

  • Published:

  • Issue Date:

  • DOI: