Skip to main content
Log in

Certificateless Hybrid Signcryption Scheme for Secure Communication of Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Signcryption is a cryptographic primitive that fulfills both the functions of digital signature and public key encryption simultaneously, at a cost significantly lower than that required by the traditional signature-then-encryption approach. In this paper, we propose a hybrid signcryption scheme in the certificateless setting, its security and performance were analyzed. As a result, its provable security has been verified to achieve the confidentiality and unforgeability. Comparative analysis shows that the new scheme has lower computation cost and communication overhead. Generally speaking, it is very suitable for secure communication protocols of key management and secure routing in the wireless sensor networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yang, S. H. (Ed.). (2014). WSN security. In Wireless sensor networks (pp. 187–215). London: Springer.

  2. Prasad, N. R., & Alam, M. (2006). Security framework for wireless sensor networks. Wireless Personal Communications, 37(3–4), 455–469.

    Article  Google Scholar 

  3. Son, J. H., Lee, J. S., & Seo, S. W. (2010). Topological key hierarchy for energy-efficient group key management in wireless sensor networks. Wireless Personal Communications, 52(2), 359–382.

    Article  Google Scholar 

  4. He, X., Niedermeier, M., & De Meer, H. (2013). Dynamic key management in wireless sensor networks. A survey. Journal of Network and Computer Applications, 36(2), 611–622.

    Article  Google Scholar 

  5. Oliveira, L. B., Aranha, D. F., Gouvêa, C. P., Scott, M., Câmara, D. F., López, J., et al. (2011). TinyPBC: Pairings for authenticated identity-based non-interactive key distribution in sensor networks. Computer Communications, 34(3), 485–493.

    Article  Google Scholar 

  6. Naor, M., & Segev, G. (2012). Public-key cryptosystems resilient to key leakage. SIAM Journal on Computing, 41(4), 772–814.

    Article  MATH  MathSciNet  Google Scholar 

  7. Shamir, A. (Ed.). (1985). Identity-based cryptosystems and signature schemes. In Advances in cryptology (pp. 47–53). Berlin: Springer.

  8. Al-Riyami, S. S., & Paterson, K. G. (Eds.). (2003). Certificateless public key cryptography. In Advances in cryptology-ASIACRYPT 2003 (pp. 452–473). Berlin: Springer.

  9. Zheng, Y. (Ed.). (1997). Digital signcryption or how to achieve cost (signature & encryption) \( \ll \) cost (signature) + cost (encryption). In Advances in cryptology—CRYPTO’97 (pp. 165–179). Berlin: Springer.

  10. Wu, C. H., & Chen, Z. (2008). A new efficient certificateless signcryption scheme. In Information science and engineering, 2008. ISISE’08. International symposium on IEEE (Vol. 1, pp. 661–664).

  11. Weng, J., Yao, G., Deng, R. H., Chen, M. R., & Li, X. (2011). Cryptanalysis of a certificateless signcryption scheme in the standard model. Information Sciences, 181(3), 661–667.

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu, W. H., & Xu, C. X. (2011). Certificateless signcryption scheme without bilinear pairing. Ruanjian Xuebao/Journal of Software, 22(8), 1918–1926.

    Google Scholar 

  13. Liu, Z., Hu, Y., Zhang, X., & Ma, H. (2010). Certificateless signcryption scheme in the standard model. Information Sciences, 180(3), 452–464.

    Article  MATH  MathSciNet  Google Scholar 

  14. Jin, Z., Wen, Q., & Du, H. (2010). An improved semantically-secure identity-based signcryption scheme in the standard model. Computers & Electrical Engineering, 36(3), 545–552.

    Article  MATH  Google Scholar 

  15. Miao, S., Zhang, F., Li, S., & Mu, Y. (2013). On security of a certificateless signcryption scheme. Information Sciences, 232, 475–481.

    Article  MATH  MathSciNet  Google Scholar 

  16. Cramer, R., & Shoup, V. (2003). Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1), 167–226.

    Article  MATH  MathSciNet  Google Scholar 

  17. Kaur, K., & Seema, E. (2012). Hybrid algorithm with DSA, RSA and MD5 encryption algorithm for wireless devices. International Journal of Engineering Research and Applications (IJERA), 2(5), 914–917.

    Google Scholar 

  18. Desmedt, Y., Gennaro, R., Kurosawa, K., & Shoup, V. (2010). A new and improved paradigm for hybrid encryption secure against chosen-ciphertext attack. Journal of Cryptology, 23(1), 91–120.

    Article  MATH  MathSciNet  Google Scholar 

  19. Libert, B., Paterson, K. G., & Quaglia, E. A. (Eds.). (2012). Anonymous broadcast encryption: Adaptive security and efficient constructions in the standard model. In Public key cryptography-PKC 2012 (pp. 206–224). Berlin: Springer.

  20. He, W., Peng, X., & Meng, X. (2012). A hybrid strategy for cryptanalysis of optical encryption based on double-random phase-amplitude encoding. Optics & Laser Technology, 44(5), 1203–1206.

    Article  Google Scholar 

  21. Li, F., Shirase, M., & Takagi, T. (2013). Certificateless hybrid signcryption. Mathematical and Computer Modelling, 57(3), 324–343.

    Article  MathSciNet  Google Scholar 

  22. Selvi, S. S. D., Vivek, S. S., & Pandu Rangan, C. (2009). Breaking and re-building a certificateless hybrid signcryption scheme. Available from eprint.iacr.org/2009/62.

  23. Barbosa, M., & Farshim, P. (2008, March). Certificateless signcryption. In Proceedings of the 2008 ACM symposium on Information, computer and communications security (pp. 369–372). ACM.

  24. Sun, Y. X., & Li, H. (2011). Efficient certificateless hybrid signcryption. Journal of Software, 7, 021.

    Google Scholar 

  25. Xie, W., & Zhang, Z. (2010, June). Efficient and provably secure certificateless signcryption from bilinear maps. In 2010 IEEE international conference on wireless communications, networking and information security (WCNIS) (pp. 558–562). IEEE.

  26. Selvi, S. S. D., Vivek, S. S., & Rangan, C. P. (2010). Security weaknesses in two certificateless signcryption schemes. IACR Cryptology ePrint Archive, 2010, 92.

  27. Zheng, Y., & Imai, H. (1998). How to construct efficient signcryption schemes on elliptic curves. Information Processing Letters, 68(5), 227–233.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Science Foundation of China under Grants 61262079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchao Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, A., Liang, H. Certificateless Hybrid Signcryption Scheme for Secure Communication of Wireless Sensor Networks. Wireless Pers Commun 80, 1049–1062 (2015). https://doi.org/10.1007/s11277-014-2070-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2070-y

Keywords

Navigation