SINR-Constrained Joint Scheduling and Optimal Resource Allocation in VLC Based WPAN System

Abstract

A joint scheduling and optimal resource allocation scheme for wireless personal area network using visible light is proposed. In current IEEE 802.15.7 standard, multiple channel scheduling in medium access control (MAC) layer and variable data rate opportunity in physical layer (PHY) are performed separately. Therefore, the resources are not utilized effectively owing to the exclusion of channel variable characteristics during the scheduling. In this paper, the case for combining the PHY and MAC layer into a cross-layer platform is conducted for utilizing the resources efficiently. Generally in visible light communication (VLC) system, data rate of one link impacts on its neighbor link due to their high signal-to-noise ratio and this impact varies gradually according to some perspectives such as, field-of-view interaction and distance, hence allocated rate of both users could be dissipated. Moreover, the cell radius in VLC system is small compared with other small cell network and users from adjacent cells impact on transmission link which arises co-channel interference. To solve these problems, a novel joint scheduling and rate allocation (JSRA) algorithm associated with throughput maximization and channel-state has been proposed in VLC scenario. The objective of JSRA model is, each channel can determine the feasibility of its rate which always intends to increase, by exploiting the constraint value of signal-to-interference-plus-noise ratio (SINR) of that scheduled channel. The results show that the performance of joint control approach increases the total system average throughput and the spectral efficiency.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Komine, T., & Nakagawa, M. (2004). Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics, 50(1), 100–107.

    Article  Google Scholar 

  2. 2.

    Elgala, H., Mesleh, R., & Haas, H. (2009). Indoor broadcasting via white LEDs and OFDM. IEEE Transactions on Consumer Electronics, 55(3), 1127–1134.

    Article  Google Scholar 

  3. 3.

    Tanaka, Y., Komine, T., Haruyama, S. & Nakagawa, M. (2001). Indoor visible communication utilizing plural white LEDs as lighting. In Proceedings of 2001 12th IEEE international symposium on personal, indoor and mobile radio communications, vol. 2, pp. F-81–F-85.

  4. 4.

    IEEE Standard. (2011). Local and Metropolitan Area Networks-Part 15.7: Short-range wireless optical communication using visible light.

  5. 5.

    Le, N. T., Choi, S., & Jang, Y. M. (2012). New QoS resource allocation scheme using GTS for WPANs. Wireless Personal Communications, 67(2), 25–45.

    Article  Google Scholar 

  6. 6.

    Kim, W.-C., Bae, C.-S., Jeon, S.-Y., Pyun, S.-Y., & Cho, D.-H. (2010). Efficient resource allocation for rapid link recovery and visibility in visible-light local area networks. IEEE Transactions on Consumer Electronics, 56(2), 524–531.

    Article  Google Scholar 

  7. 7.

    Tsiatmas, A., Baggen, C. P. M. J., Willems, F. M. J., Linnartz, J.-P. M. G., & Bergmans, J. W. M. (2014). An illumination perspective on visible light communications. IEEE Communications Magazine, 52(7), 64–71.

    Article  Google Scholar 

  8. 8.

    Bykhovsky, D., & Arnon, S. (2014). Multiple access resource allocation in visible light communication systems. Journal of Lightwave Technology, 32(8), 1594–1600.

    Article  Google Scholar 

  9. 9.

    Zeng, L., O’Brien, D., Minh, H., Faulkner, G., Lee, K., Jung, D., et al. (2009). High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting. IEEE Journal on Selected Areas in Communications, 27(9), 1654–1662.

    Article  Google Scholar 

  10. 10.

    Khalid, A. M., Cossu, G., Corsini, R., Choudhury, P., & Ciaramella, E. (2012). 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics Journal, 4(5), 1465–1473.

    Article  Google Scholar 

  11. 11.

    Ghimire, B. & Haas, H. (2012). Self-organising interference coordination in optical wireless networks. EURASIP Journal on Wireless Communications and Networking, 2012(131), 1–15.

  12. 12.

    Eryilmaz, A., Srikant, R., & Perkins, J. R. (2005). Stable scheduling policies for fading wireless channels. IEEE/ACM Transactions on Networking, 13(1), 411–424.

    Article  Google Scholar 

  13. 13.

    Lin, X., Shroff, N. B., & Srikant, R. (2006). A tutorial on cross-layer optimization in wireless networks. IEEE Journal on Selected Areas in Communications, 24(8), 1452–1463.

    Article  Google Scholar 

  14. 14.

    Jose, J., & Vishwanath, S. (2011). Distributed rate allocation for wireless network. IEEE Transactions on Information Theory, 57(10), 6539–6554.

    MathSciNet  Article  Google Scholar 

  15. 15.

    Mondal, R. K., Chowdhury, M. Z., Saha, N. & Jang, Y. M. (2012). Interference-aware optical resource allocation in visible light communication. In Proceedings of 2012 International Conference on ICT Convergence (ICTC), pp. 155–158.

  16. 16.

    Bhargava, V., Jose, J., Srinivasan, K., & Vishwanath, S. (2012). Q-CMRA: Queue-based channel-measurement and rate-allocation. IEEE Transactions Wireless Communications, 11(11), 4214–4223.

    Article  Google Scholar 

  17. 17.

    Al-Janabi, M., Tsimenidis, C., Sharif, B., & Goff, S. Le. (2011). Scheduling and resource allocation strategy for OFDMA systems over time-varying channels. International Journal of Wireless Information Networks, 18(3), 119–130.

    Article  Google Scholar 

  18. 18.

    Bertsekas, D. (1996). Constrained Optimization and Lagrange Multiplier Methods (1st ed.). USA: Athena Scientific. ISBN 978-1886529045.

  19. 19.

    Zorba, N. & Verkoukis, C. (2010). A QoS-based dynamic queue length scheduling algorithm in multiantenna heterogenous systems. EURASIP Journal on Wireless Communications and Networking, 2010(2), 1–10.

  20. 20.

    Al-Harthi, Y. S., Tewfik, A. H., & Alouini, M.-S. (2007). Multiuser diversity with quantized feedback. IEEE Transactions Wireless Communications, 6(1), 330–337.

    Article  Google Scholar 

  21. 21.

    Hwang, G., & Ishizaki, F. (2008). Design of a fair scheduler exploiting multiuser diversity with feedback information reduction. IEEE Communications Letters, 12(2), 124–126.

    Article  Google Scholar 

  22. 22.

    Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D. (2009). Linear programming and network flows (4th ed.). New Jersey: Wiley. ISBN 978-0470462720.

  23. 23.

    Zhao, W., Du, Y., & Zhang, X. (2012). Cross-layer power allocation for packet transmission over fading channel. Wireless Personal Communications, 65(3), 617–642.

    Article  Google Scholar 

  24. 24.

    IEEE Standard 802.11 1999 edition (r2003). IEEE standard for information technology telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements part 11: Wireless LAN medium access control (mac) and physical layer (phy) specifications.

  25. 25.

    IEEE Standard 802.11ac. (2013). IEEE standard for information technology telecommunications and information exchange between systems local and metropolitan area networks-specific requirements part 11: Wireless LAN medium access control (mac) and physical layer (phy) specifications-amendment 4: Enhancements for very high throughput for operation in bands below 6 GHz.

Download references

Acknowledgments

This work was supported by the IT R&D program of MKE/KEIT [10035362, Development of Home Network Technology based on LED-ID]. This work was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2013057922).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yeong Min Jang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mondal, R.K., Saha, N., Le, N. et al. SINR-Constrained Joint Scheduling and Optimal Resource Allocation in VLC Based WPAN System. Wireless Pers Commun 78, 1935–1951 (2014). https://doi.org/10.1007/s11277-014-2054-y

Download citation

Keywords

  • Visible light communication
  • Scheduling
  • Cross-layer
  • Rate allocation
  • WPAN
  • SINR
  • Spectral efficiency