Skip to main content
Log in

PAPR Reduction in MIMO-OFDM Systems: Spatial and Temporal Processing

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) technology is a promising solution for next generation wireless communications, due to high bandwidth efficiency, resistance to RF interference, and robustness to multipath fading. A major drawback of OFDM is its high peak-to-average power ratio (PAPR) which results in non-linearities in the output signal. In this paper, two methods based on spatial/temporal processing are proposed to reduce the PAPR of MIMO-OFDM systems. These methods divide the OFDM block at each transmit antenna into some subblocks. Then, spatial and temporal processing in the form of circular shifting or interleaving are applied to generate different candidate sequences. Finally, for each transmit antenna the candidate sequence with the lowest PAPR is chosen for transmission. Compared to the conventional PAPR reduction schemes such as ordinary partial transmit sequences (O-PTS), the proposed methods require lower computational complexity and have superior PAPR reduction performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Weinstein, S., & Ebert, P. (1971). Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Transactions on Communication Technology, 19(5), 628–634.

    Article  Google Scholar 

  2. Wu, Y., & Zou, W. Y. (1995). Orthogonal frequency division multiplexing: A multi-carrier modulation scheme. IEEE Transactions on Broadcasting, 41(3), 392–399.

    Google Scholar 

  3. Nee, R. V., & Prasad, R. (2000). OFDM for wireless multimedia communications. Artech House.

  4. Fazel, Kh, & Kaiser, S. (2008). Multi-carrier and spread spectrum systems: from OFDM and MC-CDMA to LTE and WiMAX. UK: Wiley.

    Book  Google Scholar 

  5. Wang, T., Yang, Ch., Wu, G., Li, Sh, & Li, G. Y. (2009). OFDM and its wireless applications: A survey. IEEE Transactions on Vehicular Technology, 58(4), 1673–1694.

    Article  Google Scholar 

  6. Hanzo, L., Akhtman, Y., Wang, L., & Jiang, M. (2011). MIMO-OFDM for LTE, WiFi and WiMAX: Coherent versus non-coherent and cooperative turbo transceivers. UK: Wiley.

    Google Scholar 

  7. Tarokh, V., & Jafarkhani, H. (2000). On the computation and reduction of the peak-to-average power ratio in multicarrier communications. IEEE Transactions on Communications, 48(1), 37–44.

    Article  MathSciNet  Google Scholar 

  8. O’Neill, R., & Lopes, L. B. (1995). Envelope variations and spectral splatter in clipped multicarrier signals. In Proceedings of IEEE PIMRC, Toronto, Canada, pp. 71–75.

  9. Armstrong, J. (2002). Peak-to-average power reduction for OFDM by repeated clipping and frequency domain ltering. IEEE Electronics Letters, 38(5), 246–247.

    Article  MathSciNet  Google Scholar 

  10. Omidi, M. J., Minasian, A., Saeedi-Sourck, H., Kasiri, K., & Hosseini, I. (2013). PAPR reduction in OFDM systems: Polynomial-based compressing and iterative expanding. Wireless Personal Communications. doi:10.1007/s11277-013-1350-2.

  11. Jiang, T., & Zhu, G. (2005). Complement block coding for reduction in peak-to-average power ratio of OFDM signals. IEEE Communications Magazine, 43(9), 57–65.

    Google Scholar 

  12. Borjesson, P. O., Feichtinger, H. G., Grip, N., Isaksson, M., Kaiblinger, N., Odling, P., et al. (1999). A low-complexity PAPR-reduction method for DMT-VDSL. In Proceeding of the 5th international symposium on digital signal processing for communication systems (pp. 164–199), Australia.

  13. Tellado, J., & Cio, J. M. (1998). PAPR reduction with minimal or zero bandwidth loss and low complexity. ANSI document, T1E1.4 Technical Subcommittee.

  14. Krongold, B. S., & Jones, D. L. (2003). PAR reduction in OFDM via active constellation extension. IEEE Transactions on Broadcasting, 49(3), 258–268.

    Article  Google Scholar 

  15. Ho, W. S., Madhukumar, W. S., & Chin, F. (2003). Peak-to-average power reduction using partial transmit sequences: A suboptimal approach based on dual layered phase sequencing. IEEE Transactions on Broadcasting, 49(2), 225–231.

    Article  Google Scholar 

  16. Han, S. H., & Lee, J. H. (2004). Modied selected mapping technique for PAPR reduction of coded OFDM signal. IEEE Transactions on Broadcasting, 50(3), 335–341.

    Article  MathSciNet  Google Scholar 

  17. Jayalath, A. D. S., & Tellambura, C. (2000). Reducing the peak-to-average power ratio of orthogonal frequency division multiplexing signal through bit or symbol interleaving. IEEE Electronics Letters, 36(13), 1161–1163.

    Article  Google Scholar 

  18. Lee, Y. L., You, Y. H., Jeon, W. G., Paik, J. H., & Song, H. K. (2003). Peak-to-average power ratio in MIMO-OFDM systems using selective mapping. IEEE Communications Letters, 7(12), 575–577.

    Article  Google Scholar 

  19. Baek, M. S., Kim, M. J., You, Y. H., & Song, H. K. (2004). Semi-blind channel estimation and PAR reduction for MIMO-OFDM system with multiple antennas. IEEE Transactions on Broadcasting, 50(4), 414–424.

    Article  Google Scholar 

  20. Latinovic, Z., & Bar-Ness, Y. (2006). SFBC MIMO-OFDM peak-to-average power ratio reduction by polyphase interleaving and inversion. IEEE Communications Letters, 10(4), 266–268.

    Article  Google Scholar 

  21. Jiang, T., & Li, C. (2012). Simple alternative multisequences for PAPR reduction without side information in SFBC MIMO-OFDM systems. IEEE Transactions on Vehicular Technology, 61(7), 3311–3315.

    Article  Google Scholar 

  22. Joo, H. S., No, J. S., & Shin, D. J. (2010). A blind SLM PAPR reduction scheme using cyclic shift in STBC MIMO-OFDM system. In International conference on information and communication technology convergence (ICTC) (pp. 272–273), South Korea.

  23. Siegl, C., & Fischer, R. F. H. (2008). Partial transmit sequences for peak-to-average power ratio reduction in multiantenna OFDM. EURASIP Journal on Wireless Communications and Networking, Article ID:325829.

  24. Jayalath, A. D. S., Tellambura, C., & Wu, H. (2000). Reduced complexity PTS and new phase sequences for SLM to reduce PAPR of an OFDM signal. In Vehicular technology conference proceedings (pp. 1914–1917), Tokyo.

  25. Tellambura, C. (2001). Computation of the continuous-time PAR of an OFDM signal with BPSK subcarriers. IEEE Communications Letters, 5(5), 185–187.

    Article  Google Scholar 

  26. Yang, L., Soo, K. K., Li, S. Q., & Siu, Y. M. (2011). PAPR reduction using low complexity PTS to construct of OFDM signals without side information. IEEE Transactions on Broadcasting, 57(2), 284–290.

    Article  Google Scholar 

  27. Wang, L., & Liu, J. (2011). Cooperative PTS for PAPR reduction in MIMO-OFDM. IEEE Electronics Letters, 47(5), 472–474.

    Google Scholar 

  28. Gardner, S. (2001). The HomePlug standard for powerline home networking. In ISPL2001 Proceedings of the 5th international symposium on power-line communications and its applications, pp. 15–22.

  29. Jiang, T., & Wu, Y. (2008). An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Transactions on Broadcasting, 54(2), 257–268.

    Article  Google Scholar 

  30. Hussain, S. (2009). Peak-to-average power ratio analysis and reduction of cognitive radio signals. PhD Thesis, University of Rennes, France.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashir Reza Karimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, B.R., Beheshti, M. & Omidi, M.J. PAPR Reduction in MIMO-OFDM Systems: Spatial and Temporal Processing. Wireless Pers Commun 79, 1925–1940 (2014). https://doi.org/10.1007/s11277-014-1965-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1965-y

Keywords

Navigation