Skip to main content
Log in

A Novel Multi-carrier Order Division Multi-access Communication System Based on TDCS with Fractional Fourier Transform Scheme

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel fractional Fourier transform (FrFT) based multi-carrier order division multi-access communication system, in which each user is uniquely identified by an FrFT order. Transform domain communication system (TDCS) with FrFT scheme is also proposed to synthesize the wide-band baseband waveforms in all FrFT domains with different users’ FrFT orders, which enhances the interference avoidance capability of this system under most of interference. Therefore, multiple independent data streams can be transmitted by using FrFT–OFDM in the same time and different FrFT domains. However, chirp bases, as the new kind of carriers with different modulated rates, are merely mutually approximately orthogonal. There is a problem of energy leakage between multiple chirp carriers, which possibly causes the multiple chirp carriers inter-shielding to influence the FrFT–OFDM demodulation performance. An efficient allocation algorithm of multiple chirp carriers by presetting the carrier parameters is proposed to solve this problem. Based on MC-CDMA, a variable bit rate system structure is proposed for TDCS with FrFT scheme under different channel environments. In order to simplify the process of modulation and demodulation of TDCS with FrFT scheme, a whole new cyclic shift key modulation mode in FrFT domain is also proposed. Both theories and simulations confirm strictly the validity of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma, J., Li, G. Y., & Juang, B. H. (2009). Signal processing in cognitive radio. Proceedings of the IEEE, 97(5), 805–823.

    Article  Google Scholar 

  2. Mitola, J, III. (1993). Software radios: Survey, critical evaluation and future directions. IEEE Aerospace and Electronic Systems Magazine, 8(4), 25–36.

  3. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  4. Mitola, J, III. & Maguire, G. Q, Jr. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

  5. Weiss, T. A., & Jondral, F. K. (2004). Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine, 42(3), S8–14.

    Article  Google Scholar 

  6. Schmidl, T. M., & Cox, D. C. (1997). Robust frequency and timing synchronization for OFDM. IEEE Transactions on Communications, 45(12), 1613–1621.

    Article  Google Scholar 

  7. Falconer, D., Ariyavisitakul, S. L., Benyamin-Seeyar, A., & Eidson, B. (2002). Frequency domain equalization for single-carrier broadband wireless systems. IEEE Communications Magazine, 40(4), 58–66.

    Article  Google Scholar 

  8. Edfors, O., Sandell, M., Van de Beek, J. J., Wilson, S. K., & Borjesson, P. O. (1998). OFDM channel estimation by singular value decomposition. IEEE Transactions on Communications, 46(7), 931–939.

    Article  Google Scholar 

  9. German, E. H. (1988). Transform domain signal processing study final report. Technical Report, Reistertown, MD, Contract: F30602-86-C-0133.

  10. Fumat, G., Chargé, P., Zoubir, A., & Fournier-Prunaret, D. (2011). Transform domain communication systems from a multidimensional perspective, impacts on bit error rate and spectrum efficiency. IET Communications, 5(4), 476–483.

    Article  Google Scholar 

  11. Hu, S., Bi, G., Guan, Y. L., & Li, S. (2013). Spectrally efficient transform domain communication system with quadrature cyclic code shift keying. IET Communications, 7(4), 382–390.

    Article  MathSciNet  MATH  Google Scholar 

  12. DeCusatis, C. M., & Das, P. K. (1990). Spread-spectrum techniques in optical communication using transform domain processing. IEEE Journal on Selected Areas in Communications, 8(8), 1608–1616.

    Article  Google Scholar 

  13. Chakravarthy, V., Nunez, A. S., Stephens, J. P., Shaw, A. K., & Temple, M. A. (2005). TDCS, OFDM, and MC-CDMA: A brief tutorial. IEEE Communications Magazine, 43(9), S11–S16.

    Article  Google Scholar 

  14. Baier, A., Baier, P. W., & Pandit, M. (1985). Spread-spectrum waveforms simplifying transform domain signal processing. IEE Proceedings F (Communications, Radar and Signal Processing), 132(7), 558–560.

  15. Han, C., Wang, J., Gong, S., & Li, S. (2006). Detection and performance of the OFDM-based transform domain communication system. IEEE Conference on Communications, Circuits and Systems Proceedings, 2, 1332–1336.

    Google Scholar 

  16. Ozaktas, H. M., Barshan, B., Mendlovic, D., & Onural, L. (1994). Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms. JOSA A, 11(2), 547–559.

    Article  MathSciNet  Google Scholar 

  17. Mendlovic, D., & Lohmann, A. W. (1997). Space-bandwidth product adaptation and its application to superresolution: Fundamentals. JOSA A, 14(3), 558–562.

    Article  MathSciNet  Google Scholar 

  18. Tao, R., Meng, X. Y., & Wang, Y. (2011). Transform order division multiplexing. IEEE Transactions on Signal Processing, 59(2), 598–609.

    Article  MathSciNet  Google Scholar 

  19. Almeida, L. B. (1994). The fractional Fourier transform and time-frequency representations. IEEE Transactions on Signal Processing, 42(11), 3084–3091.

    Article  Google Scholar 

  20. Pei, S.-C., & Ding, J. J. (2010). Fractional Fourier transform, wigner distribution, and filter design for stationary and nonstationary random processes. IEEE Transactions on Signal Processing, 58(8), 4079–4092.

    Article  MathSciNet  Google Scholar 

  21. Tao, R., Li, Y., & Wang, Y. (2010). Short-time fractional fourier transform and its applications. IEEE Transactions on Signal Processing, 58(5), 2568–2580.

    Article  MathSciNet  Google Scholar 

  22. Chen, E., Tao, R., & Meng, X. (2006). The OFDM system based on the fractional Fourier transform. ICICIC’06, 3, 14–17.

    Google Scholar 

  23. Wang, H., & Ma, H. (2010). MIMO OFDM systems based on the optimal fractional fourier transform. Wireless Personal Communications, 55(2), 265–272.

    Article  Google Scholar 

  24. Stojanovic, D., Djurovic, I., & Vojcic, B. R. (2009). Interference analysis of multicarrier systems based on affine Fourier transform. IEEE Transactions on Wireless Communications, 8(6), 2877–2880.

    Article  Google Scholar 

  25. Hanzo, L., Münster, M., Choi, B. J., & Keller, T. (2003). OFDM and MC-CDMA for broadband multi-user communications, WLANs and broadcasting. New York: Wiley.

    Book  Google Scholar 

  26. Zahirniak, D. R., Sharpin, D. L., & Fields, T. W. (1998). A hardware-efficient, multirate, digital channelized receiver architecture. IEEE Transactions on Aerospace and Electronic Systems, 34(1), 137–152.

    Article  Google Scholar 

  27. Swackhammer, P. J., Temple, M. A., & Raines, R. A. (1999). Performance simulation of a transform domain communication system for multiple access applications. MILCOM, 2, 1055–1059.

    Article  Google Scholar 

  28. Pei, S.-C., & Ding, J. J. (2000). Closed-form discrete fractional and affine Fourier transform. IEEE Transactions on Signal Processing, 48(5), 1338–1353.

    Article  MathSciNet  MATH  Google Scholar 

  29. Ozaktas, H. M., Kutay, M. A., & Zalevsky, Z. (2000). The fractional Fourier transform with applications in optics and signal processing. New York: Wiley.

    Google Scholar 

  30. Xiang, G. X. (1996). On bandlimited signals with fractional Fourier transform. IEEE Signal Processing Letters, 3(3), 72–74.

    Article  Google Scholar 

  31. Zhao, X., Deng, B., & Tao, R. (2005). Dimensional normalization in the digital computation of the fractional Fourier transform (in Chinese). Transactions of Beijing Institute of Technology, 25(4), 360–364.

    Google Scholar 

  32. Zhao, X., Tao, R., Zhou, S., & Wang, Y. (2003). Chirp signal detection and multiple parameter estimation using Radon-ambiguity and fractional Fourier transform (in Chinese). Transactions of Beijing Institute of Technology, 23(3), 371–374, 377.

  33. Capus, C., & Brown, K. (2003). Fractional Fourier transform of the Gaussian and fractional domain signal support. IEE Proceedings-Vision, Image and Signal Processing, 150(2), 99–106.

    Article  Google Scholar 

  34. Bertsekas, D. P., & Tsitsiklis, J. N. (2002). Introduction to probability (Vol. 1). Belmont, MA: Athena Scientific.

    Google Scholar 

  35. Proakis, J. G. (2011). Digital communications (4th ed.). New York: McGraw-Hill.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61331021 and 61201354) and Doctoral Fund of Ministry of Education of China (No. 20121101130001) and the Cultivation and Development Engineering of Science and Technology Innovation Base (No. Z131101002813088) and Open Research fund Program of Key Lab. for Spacecraft TT&C and Communication, Ministry of Education, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Tao, R., Wang, Y. et al. A Novel Multi-carrier Order Division Multi-access Communication System Based on TDCS with Fractional Fourier Transform Scheme. Wireless Pers Commun 79, 1301–1320 (2014). https://doi.org/10.1007/s11277-014-1931-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1931-8

Keywords

Navigation