Wireless Personal Communications

, Volume 77, Issue 4, pp 2497–2515 | Cite as

Road Oriented Traffic Information System for Vehicular Ad hoc Networks

  • Sardar Muhammad Bilal
  • Atta ur Rehman Khan
  • Samee Ullah Khan
  • Sajjad A. Madani
  • Babar Nazir
  • Mazliza Othman


Over the last few years, vehicular ad hoc networks (VANETs) have gained popularity for their interesting applications. To make efficient routing decisions, VANET routing protocols require road traffic density information for which they use density estimation schemes. This paper presents a distributed mechanism for road vehicular density estimation that considers multiple road factors, such as road length and junctions. Extensive simulations are carried out to analyze the effectiveness of the proposed technique. Simulation results suggested that, the proposed technique is more accurate compared to the existing technique. Moreover, it facilitate VANET routing protocols to increase packet delivery ratio and reduce end-to-end delay.


VANETs road traffic estimation Infrastructure-free traffic estimation Traffic estimation for VANETs routing VANETs cell density packet Vehicular ad hoc network 


  1. 1.
    Car-to-Car Communication Consortium. (2012). Accessed March 2012.
  2. 2.
    Yin, J., ElBatt, T., Yeung, G., Ryu, B., Habermas, S., Krishnan H., & Talty, T. (2004). Performance evaluation of safety applications over DSRC vehicular ad hoc networks. ACM VANET (pp. 1–9), October 2004.Google Scholar
  3. 3.
    Zimmer, M. T. (2005). Personal information and the design of vehicle safety communication technologies: An application of privacy as contextual integrity. In AAAS Science and Technology in Society.Google Scholar
  4. 4.
    US Department of Transportation: Intelligent transportation system. Accessed March 2012.
  5. 5.
    Li, F., & Wang, Y. (2007). Routing in vehicular ad Hoc networks: A survey. IEEE Vehicular Technology Magazine, 2(2), 12–22.CrossRefGoogle Scholar
  6. 6.
    White, J. (2012). Identify intelligent vehicle safety applications enabled. Vehicle safety communications consortium. Accessed March 2012.
  7. 7.
    Kargl, F. (2006). Vehicular communications and VANETs. Germany: Talks Chaos Communication Congress.Google Scholar
  8. 8.
    Khan, A. R., Madani, S. A., Hayat, K., & Khan, S. U. (2012). Clustering-based power-controlled routing for mobile wireless sensor networks. International Journal of Communication Systems, 4(25), 529–542.CrossRefGoogle Scholar
  9. 9.
    Mo, Z., Zhu, H., Makki, K., & Pissinou, N. (2006). MURU: A multi-hop routing protocol for urban vehicular ad hoc networks. In Mobile and ubiquitous systems: Networking and services (pp. 1–8).Google Scholar
  10. 10.
    Lim, K. W., & Ko, Y. B. (2010). Multi-hop data harvesting in vehicular sensor networks. IET Communications, 4, 768.CrossRefGoogle Scholar
  11. 11.
    Jerbi, M., Senouci, S. M., Rasheed, T., & Ghamri-Doudane, Y. (2007). AniImproved vehicular ad hoc routing protocol for city environments. IEEE International Conference on Communications (pp. 3972–3979), June 2007.Google Scholar
  12. 12.
    Bilal, S. M., Madani, S. A., & Khan, I. A. (2011). Enhanced junction selection mechanism for routing protocol in VANETs. International Arab Journal of Information Technology, 8(4), 422–429.Google Scholar
  13. 13.
    Lee, J., Lo, C., Tang, S., Horng, M., & Kuo, Y. (2011). A hybrid traffic geographic routing with cooperative traffic information collection scheme in VANET. In International Conference on Advanced Communication Technology (pp. 1496–1501).Google Scholar
  14. 14.
    Ziliaskopoulos, A. K., & Zhang, J. (2003). A zero public infrastructure vehicle based traffic information system. Transportation Research Board Meeting, Washington, July 2003.Google Scholar
  15. 15.
    Jerbi, M., Senouci, S. M., Meraihi, R., & Doudane, Y. G. (2007). An infrastructure-free traffic information system for vehicular networks. In IEEE Vehicular Technology Conference (pp. 2086–2090), October 2007.Google Scholar
  16. 16.
    Wischhof, L., Ebner, A., Rohling, H., Lott, M., & Halmann R. (2003). SOTIS—A self-organizing traffic information system. In IEEE Vehicular Technology Conference, April 2003.Google Scholar
  17. 17.
    Nadeem, T., Dashtinezhad, S., Liao, C., & Iftode, L. (2004). TrafficView: Traffic data dissemination using car-to-car communication. In ACM Mobile Computing and Communications Review (pp. 6–19), July 2004.Google Scholar
  18. 18.
    Tyagi, V., Kalyanaraman, S., & Krishnapuram, R. (2012). Vehicular traffic density state estimation based on cumulative road acoustics. IEEE Transactions on Intelligent Transportation Systems, 13(3), 1156–1166.CrossRefGoogle Scholar
  19. 19.
    Sen, R., Cross, A., Vashistha, A., Padmanabhan, V. N., Cutrell, E., & Thies, W. (2013). Accurate speed and density measurement for road traffic in India. In Third ACM Symposium on Computing for Development.Google Scholar
  20. 20.
    Bilal, S. M., Saeed, U., & Mustafa, S. (2011). Impact of directional density on GyTAR routing protocol for VANETs in city environments. In International IEEE Multitopic Conference (pp. 296–300), December 2011.Google Scholar
  21. 21.
    Venkata, M. D., Pai, M. M. M., Pai, R. M., & Mouzna, J. (2011). Traffic monitoring and routing in VANETs—A cluster based approach. In International Conference on ITS Telecommunications (pp. 27–32), August 2011.Google Scholar
  22. 22.
    Zhao, J., & Cao, G. (2006). VADD: Vehicle-assisted data delivery in vehicular ad hoc networks. In IEEE INFOCOM (pp. 1–12).Google Scholar
  23. 23.
    Chou, L. D. (2010). Intersection-based routing protocol for VANET. In International Conference on Ubiquitous and Future Networks (pp. 268–272), June 2010.Google Scholar
  24. 24.
    Bajaj, L., Takai, M., Ahuja, R., Tang, K., Bagrodia, R., & Gerla, M. (1997). GlomoSim: A scalable network simulator environment. Technical, Report, #990027, UCLA.Google Scholar
  25. 25.
    Filali, F., Bonnet, C., & Fiore, M. (2006). Vanet-mobisim: Generating realistic mobility patterns for VANETs. In Workshop on vehicular ad hoc networks, (pp. 96–97).Google Scholar
  26. 26.
    Choffnes, D. R., & Bustamante, F. (2005). An integrated mobility and traffic model for vehicular wireless networks. In Second ACM International Workshop on Vehicular Ad Hoc Networks (pp. 69–78).Google Scholar
  27. 27.
    Bai, F., Sadagopan, N., & Helmy, A. (2003). The important framework for analyzing the impact of mobility on performance of routing for ad hoc net-works. Ad Hoc Networks Journal Elsevier Science, 1(4), 383–403.CrossRefGoogle Scholar
  28. 28.
    Harri, J., Filali, F., & Bonnet, C. (2006). Mobility models for vehicular ad hoc networks: A survey and taxonomy. Technical Report RR-06-168, Institute Eurecom, March 2006.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sardar Muhammad Bilal
    • 1
  • Atta ur Rehman Khan
    • 2
  • Samee Ullah Khan
    • 3
  • Sajjad A. Madani
    • 4
  • Babar Nazir
    • 4
  • Mazliza Othman
    • 2
  1. 1.Department of Telematic EngineeringUniversity Carlos III de MadridLeganés, MadridSpain
  2. 2.Faculty of Computer Science and Information TechnologyUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Electrical and Computer EngineeringNorth Dakota State UniversityFargoUSA
  4. 4.Department of Computer ScienceCOMSATS Institute of Information TechnologyAbbottabadPakistan

Personalised recommendations