Wireless Personal Communications

, Volume 77, Issue 3, pp 2141–2154 | Cite as

Packet-Level Layer-Based Interleaving Unequal Forward Error Correction (LIU-FEC) for Robust Wireless Scalable Video Transmission

  • Hojin Ha
  • Changhoon YimEmail author


To improve the error resilience and video quality over wireless networks, we propose a novel packet-level layer-based interleaving unequal forward error correction (LIU-FEC) method. First, a scalable layer-based interleaving architecture is proposed for improving the efficiency of FEC from successive packet losses in variable channel conditions. The interleaved transmission across different scalable layers can efficiently disperse the consecutive packet losses into different scalable layers. Second, a closed form FEC assignment solution is proposed for minimizing video quality degradation using simple layer-based error propagation metric in hierarchical prediction structure. The simulation results show that the proposed algorithm offers higher PSNR values in various channel status, compared to the conventional FEC algorithm.


Interleaving Forward error correction Loss distribution Error propagation Scalable video coding 


  1. 1.
    Civanlar, M. R., Luthra, A., Wenger, S., & Zhu, W. (2001). Introduction to the special issue on streaming video. IEEE Transactions on Circuits and Systems for Video Technology, 11(3), 265–268.CrossRefGoogle Scholar
  2. 2.
    Text of ISO/IEC 14496–10:2005/FDAM 3 Scalable Video Coding. (2007). Joint Video Team (JVT) of ISO-IEC MPEG & ITU-T VCEG, N9197.Google Scholar
  3. 3.
    Text of ISO/IEC 14496–4:2001/PDAM 19 Reference Software for SVC. (2007). Joint Video Team (JVT) of ISO-IEC MPEG & ITU-T VCEG, N9195.Google Scholar
  4. 4.
    Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology, 17(9), 1103–1120.CrossRefGoogle Scholar
  5. 5.
    Schwarz, H., Marpe, D., & Wiegand, T. (2006). Analysis of hierarchical B pictures and MCTF. Proceedings of ICME’06, pp. 1929–1932.Google Scholar
  6. 6.
    Cheng, L., Zhang, W., & Chen, L. (2004). Rate-distortion optimized unequal loss protection for FGS compressed video. IEEE Transactions on Broadcasting, 50(2), 126–131.CrossRefGoogle Scholar
  7. 7.
    Goudarzi, P. (2009). Multi-source video transmission with minimized total distortion over wireless ad hoc networks. Wireless Personal Communications, 50(3), 329–349.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Amonou, I., Cammas, N., Kervadec, S., & Pateux, S. (2007). Optimized rate-distortion extraction with quality layers in the scalable extension of H.264/AVC. IEEE Transactions on Circuits and Systems for Video Technology, 17(9), 1186–1193.CrossRefGoogle Scholar
  9. 9.
    Yu, X., Modestino, J. W., Kurceren, R., & Chan, Y. S. (2008). A model-based approach to evaluation of the efficacy of FEC coding in combating network packet losses. IEEE/ACM Transactions on Networking, 16(3), 628–641.CrossRefGoogle Scholar
  10. 10.
    Ha, H., & Yim, C. (2008). Layer-weighted unequal error protection for scalable video coding extension of H.264/AVC. IEEE Transactions on Consumer Electronics, 54(2), 736–744.CrossRefGoogle Scholar
  11. 11.
    Wang, Y., Fang, T., Chau, L. P., & Yap, K. H. (2007). Two-dimensional channel coding scheme for MCTF-based scalable video coding. IEEE Transactions on Multimedia, 9(1), 37–45.CrossRefGoogle Scholar
  12. 12.
    Jiaying, L., Yongjin, C., Zongming, G., & Kuo, J. (2010). Bit allocation for spatial scalability coding of H.264/SVC with dependent rate-distortion analysis. IEEE Transactions on Circuits and Systems for Video Technology, 20(7), 967–981.CrossRefGoogle Scholar
  13. 13.
    Ming-Fong, T., Naveen, C., & Chilamkurti, N. (2011). An adaptive packet and block length forward error correction for video streaming over wireless networks. Wireless Personal Communications, 56(3), 435–446.CrossRefGoogle Scholar
  14. 14.
    Nafaa, A., Ahmed, T., & Mehaoua, A. (2004). Unequal and interleaved FEC protocol for robust MPEG-4 multicasting over wireless LANs. In Proceedings of IEEE ICC’04, pp. 1431–1435.Google Scholar
  15. 15.
    Liang, Y.J., Apostolopoulos, J.G., & Girod, B. (2002). Model-based delay-distortion optimization for video streaming using packet interleaving. In Proceedings of the 37th asilomar conference on signals, systems and computers, pp. 1315–1319.Google Scholar
  16. 16.
    Forney, G, Jr. (1971). Burst-correcting codes for the classic bursty channel. IEEE Transactions on Communications Technology, 19(1), 772–781.CrossRefGoogle Scholar
  17. 17.
    Choi, J.Y., & Shin, J. (2005). Content-aware packet-level interleaving method for video transmission over wireless networks. In Proceedings of the 3rd international conference on wired/wireless internet, communications, pp. 149–158.Google Scholar
  18. 18.
    Razavi, R., Fleury, M., & Ghanbari, M. (2009). Adaptive packet-level interleaving FEC for wireless priority-encoded video streaming. Advances in Multimedia. doi: 10.1155/2009/982867.
  19. 19.
    Schulzrinne, H., Casner, S., Frederick, R., & Jacobson, V. (2003). A transport protocol for real-time applications, IETF RFC 3550.Google Scholar
  20. 20.
    Reichel, J., Schwarz, H., Wien, M., & Vieron, J. (2007). Joint scalable video model 9 of ISO/IEC 14496–10:2005/AMC3 scalable video coding. Joint Video Team (JVT) of ISO-IEC MPEG & ITU-T VCEG, JVTX202.Google Scholar
  21. 21.
    Zorzi, M., Rao, R.R., & Milstein, L.B. (1995). On the accuracy of a first-order Markov model for data transmission on fading channels. In Proceedings of IEEE ICUPC’95, IEEE international conference on universal personal, communications, pp. 211–215.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Information, Telecommunications and Broadcasting EngineeringHalla UniversityWonjuKorea
  2. 2.Department of Internet and Multimedia EngineeringKonkuk UniversitySeoulKorea

Personalised recommendations