Skip to main content
Log in

On Efficient Traffic Distribution for Disaster Area Communication Using Wireless Mesh Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In recent time, a great deal of research effort has been directed toward promptly facilitating post-disaster communication by using wireless mesh networks (WMNs). WMN technology has been considered to be effectively exploited for this purpose as it provides multi-hop communication through an access network comprising wireless mesh routers, which are connected to the Internet through gateways (GWs). One of the critical challenges in using WMNs for establishing disaster-recovery networks is the issue of distributing traffic among the users in a balanced manner in order to avoid congestion at the GWs. To overcome this issue, we envision a disaster zone WMN comprising a network management center. First, we thoroughly investigate the problem of traffic load balancing amongst the GWs in our considered disaster zone WMN. Then, we develop traffic load distribution techniques from two perspectives. Our proposal from the first perspective hinges upon a balanced distribution of the bandwidth to be allocated per user. On the other hand, our second perspective considers the dynamic (i.e., varying) bandwidth demands from the disaster zone users that requires a more practical and refined distribution of the available bandwidth by following an intelligent forecasting method. The effectiveness of our proposals is evaluated through computer-based simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Asplund, M., & Nadjm-Tehrani, S. (2009). A partition-tolerant manycast algorithm for disaster area networks. In IEEE international symposium on reliable distributed systems (SRDS).

  2. Shibata, Y., Sato, Y., Ogasawara, N., & Chiba, G. (2009). A disaster information system by ballooned wireless adhoc network. In International conference on complex, intelligent and software intensive systems (CISIS).

  3. Ishizu, K., Murakami, H., & Harada, H. (2011). Cognitive wireless network infrastructure and restoration activities for the earthquake disaster. In International symposium on wireless personal multimedia communications (WPMC).

  4. Fouda, M. M., Nishiyama, H., & Kato, N. (2012). A novel heuristic-based traffic distribution method for disaster zone wireless mesh networks. In IEEE international conference on communications in China (ICCC).

  5. Liu, W., Nishiyama, H., Kato, N., Shimizu, Y., & Kumagai, T. (2012). A novel gateway selection method to maximize the system throughput of wireless mesh network deployed in disaster areas. In IEEE international symposium on personal, indoor and mobile radio communication (PIMRC).

  6. Ngo, T., Nishiyama, H., Kato, N., Shimizu, Y., Mizuno, K., & Kumagai, T. (2013). On the throughput evaluation of wireless mesh network deployed in disaster areas. In International conference on computing, networking and communications (ICNC).

  7. Wishart, R., Portmann, M., & Indulska, J. (2008). Evaluation of wireless mesh network handoff approaches for public safety and disaster recovery networks. In IEEE Australasian telecommunication networks and applications conference (ATNAC).

  8. Ran, Y. (2012). Considerations and suggestions on improvement of communication network disaster countermeasures after the Wenchuan earthquake. IEEE Communications Magazine, 49(1), 44–47.

    Article  Google Scholar 

  9. Lien, Y.-N., Jang, H.-C., & Tsai, T.-C. (2009). A MANET based emergency communication and information system for catastrophic natural disasters. In IEEE international conference on distributed computing systems workshops (ICDCSW).

  10. Sato, G., Asahizawa, D., Takahata, K., & Shibata, Y. (2009). A combination of different wireless LANs to realize disaster communication network. In IEEE international conference on distributed computing systems workshops (ICDCSW).

  11. Sakano, T., Fadlullah, Z. M., Kumagai, T., Takahara, A., Ngo, T., Nishiyama, H., et al. (2013). Disaster resilient networking—A new vision based on movable and deployable resource units (MDRUs). IEEE Network Magazine.

  12. Bedi, P. K., Gupta, P., & Gupta, T. K. (2011). A congestion-aware and load-balanced geographic multipath routing protocol for WMN. In International conference on sustainable energy and intelligent systems (SEISCON).

  13. Chen, J., Jia, J., Wen, Y., Zhao, D., & Liu, J. (2009). Optimization of resource allocation in multi-radio multi-channel wireless mesh networks. In International conference on hybrid intelligent systems (HIS).

  14. Babu, Y. K., Babu, T. N., & Ramesh, B. (2011). Minimizing interference through channel assignment in multiradio wireless mesh networks. In International conference on advances in social networks analysis and mining (ASONAM).

  15. Matlab, http://www.mathworks.com. Accessed 13 May 2013.

  16. Bahr, M. (2007). Update on the hybrid wireless mesh protocol of IEEE 802.11s. In IEEE international workshop on enabling technologies and standards for wireless mesh networking (MeshTech).

  17. Jain, R. K., Chiu, D.-M. W., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer system, Research Report. Digital Equipment Corporation. http://www.cse.wustl.edu/~jain/papers/ftp/fairness. Accessed 13 May 2013.

Download references

Acknowledgments

Part of this work was conducted under the national project, “Research and development of technologies for realizing disaster-resilient networks”, supported by the Ministry of Internal Affairs and Communications (MIC), Japan. A preliminary version of this work was presented at the 1st IEEE International Conference on Communications in China (ICCC), August 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa M. Fouda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fouda, M.M., Nishiyama, H., Miura, R. et al. On Efficient Traffic Distribution for Disaster Area Communication Using Wireless Mesh Networks. Wireless Pers Commun 74, 1311–1327 (2014). https://doi.org/10.1007/s11277-013-1579-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1579-9

Keywords

Navigation