Advertisement

Wireless Personal Communications

, Volume 77, Issue 1, pp 127–149 | Cite as

Mutual Distance Bounding Protocol with Its Implementability Over a Noisy Channel and Its Utilization for Key Agreement in Peer-to-Peer Wireless Networks

Article

Abstract

In order to protect a wireless sensor network and an RFID system against wormhole and relay attacks respectively, distance bounding protocols are suggested for the past decade. In these protocols, a verifier authenticates a user as well as estimating an upper bound for the physical distance between the user and itself. Recently, distance bounding protocols, each with a mutual authentication, are proposed to increase the security level for such systems. They are also suggested to be deployed for key agreement protocols in a short-range wireless communication system to prevent Man-in-the-Middle attack. In this paper, a new mutual distance bounding protocol called NMDB is proposed with two security parameters (\(n\) and \(t\)). The parameter \(n\) denotes the number of iterations in an execution of the protocol and the parameter \(t\) presents the number of errors acceptable by the verifier during \(n\) iterations. This novel protocol is implementable in a noisy wireless environment without requiring final confirmation message. Moreover, it is shown that, how this protocol can be employed for the key agreement procedures to resist against Man-in-the-Middle attack. NMDB is also analyzed in a noisy environment to compute the success probability of attackers and the rejection probability of a valid user due to channel errors. The analytically obtained results show that, with the proper selection of the security parameters (\(n\) and \(t\)) in a known noisy environment, NMDB provides an appropriate security level with a reliable performance.

Keywords

Distance fraud attack Mafia fraud attack Mutual distance bounding protocol Relay attack Wormhole attack 

References

  1. 1.
    Deng, G., Li, H., Zhang, Y., & Wang, J. (2013). Tree-LSHB+: An LPN-based lightweight mutual authentication RFID protocol. Wireless Personal Communications, 72(1), 159–174.CrossRefGoogle Scholar
  2. 2.
    Gao, L., Ma, M., Shu, Y., & Wei, Y. (2013). A security protocol resistant to intermittent position trace attacks and desynchronization attacks in RFID systems. Wireless Personal Communications, 68(4), 1943–1959.Google Scholar
  3. 3.
    Rashid, H., & Turuk, A. K. (2013). Localization of wireless sensor networks using a single anchor node. Wireless Personal Communications, 72(2), 975–986.CrossRefGoogle Scholar
  4. 4.
    Manap, Z., Ali, B. M., Ng, C. K., Noordin, N. K., & Sali, A. (2013). A review on hierarchical routing protocols for wireless sensor networks. Wireless Personal Communications, 72(2), 1077–1104.CrossRefGoogle Scholar
  5. 5.
    Jannati, H., & Falahati, A. (2012). Security enhanced user authentication scheme for wireless sensor network. International Journal of Electronic Security and digital forensic, 4(4), 215–228.CrossRefGoogle Scholar
  6. 6.
    Jannati, H., & Falahati, A. (2011). Cryptanalysis and enhancement of a secure group ownership transfer protocol for RFID tags. In C. K. Georgiadis, H. Jahankhani, E. Pimenidis, R. Bashroush, & A. Al-Nemrat (Eds.), LNCS: Vol. 6370. Radio frequency identification: security and privacy issues (RFIDSec 2010) (pp. 186–193). Heidelberg: Springer.Google Scholar
  7. 7.
    Francis, L., Hancke, G. P., Mayes, K., & Markantonakis, K. (2010). Practical NFC peer-to-peer relay attack using mobile phones. In S. B. Ors Yalcin (Ed.), LNCS: Vol. 6370. Radio frequency identification: security and privacy issues (RFIDSec 2010) (pp. 35–49). Heidelberg: Springer.CrossRefGoogle Scholar
  8. 8.
    Thevenon, P., Savry, O., & Tedjini, S. (2011). On the weakness of contactless systems under relay attacks. In Proceeding of the 19th international conference on software, telecommunications and computer networks (SoftCOM 2011), Split, Croatia (pp. 1–5).Google Scholar
  9. 9.
    Francillon, A., Danev, B., & Čapkun, S. (2011). Relay attacks on passive keyless entry and start systems in modern cars. In Proceedings of the 18th annual network and distributed system security symposium (NDSS 2011), San Diego. USA: California.Google Scholar
  10. 10.
    Hu, Y. C., Perrig, A., & Johnson, D. B. (2006). Wormhole attacks in wireless networks. IEEE Journal on Selected Areas in Communications, 24(2), 370–380.CrossRefGoogle Scholar
  11. 11.
    Jain, S., & Baras, J. S. (2012). Preventing wormhole attacks using physical layer authentication. In Proceedings of the wireless communications and networking conference (WCNC 2012), Paris, France (pp. 2712–2717).Google Scholar
  12. 12.
    Hancke, G. P., & Kuhn, M. (2005). An RFID distance bounding protocol. In Proceedings of the 1st international conference on security and privacy for emergent areas in communications networks (SecureComm 2005), Athens, Greece (pp. 67–73).Google Scholar
  13. 13.
    Avoine, G., Bingöl, M. A., Kardaş, S., Lauradoux, C., & Martin, B. (2011). A framework for analyzing RFID distance bounding protocols. Journal of Computer Security Special Issue on RFID Security (RFIDSec 2010), 19(2), 289–317. doi: 10.3233/JCS-2010-0408.Google Scholar
  14. 14.
    Hancke, G. P. (2011). Design of a secure distance-bounding channel for RFID. Journal of Network and Computer Applications, 34(3), 877–887.CrossRefGoogle Scholar
  15. 15.
    Avoine, G., & Tchamkerten, A. (2009). An efficient distance bounding RFID authentication protocol: Balancing false-acceptance rate and memory requirement. In P. Samarati, M. Yung, F. Martinelli, & C. A. Ardagna (Eds.), LNCS: Vol. 5735. Information security (ISC 2009) (pp. 250–261). Heidelberg: Springer.Google Scholar
  16. 16.
    Yum, D. H., Kim, J. S., Hong, S. J., & Lee, P. J. (2011). Distance bounding protocol with adjustable false acceptance rate. IEEE Communications Letters, 15(4), 434–436.CrossRefGoogle Scholar
  17. 17.
    Kim, C. H., & Avoine, G. (2011). RFID distance bounding protocols with mixed challenges. IEEE Transactions on Wireless Communications, 10(5), 1618–1626.CrossRefGoogle Scholar
  18. 18.
    Jannati, H., & Falahati, A. (2012). Mutual implementation of predefined and random challenges over RFID distance bounding protocol. In Proceedings of the 9th international conference on information security and cryptology (ISCISC 2012), Tabriz, Iran (pp. 43–47).Google Scholar
  19. 19.
    Lee, S., Kim, J. S., Hong, S. J., & Kim, J. (2012). Distance bounding with delayed responses. IEEE Communications Letters, 16(9), 1478–1481.CrossRefGoogle Scholar
  20. 20.
    Kardas, S., Kiraz, M. S., Bingöl, M. A., & Demirci, H. (2012). A novel RFID distance bounding protocol based on physically unclonable functions. In A. Jules & C. Paar (Eds.), LNCS: Vol. 7055. RFID security and privacy (RFIDsec 2012) (pp. 78–93). Heiledberg: Springer.Google Scholar
  21. 21.
    Kim, J. S., Cho, K., Yum, D. H., Hong, S. J., & Lee, P. J. (2012). Lightweight distance bounding protocol against relay attacks. IEIEC Transactions on Information and Systems, E95-D(4), 1155–1158, doi: 10.1587/transinf.E95.D.1155.
  22. 22.
    Gürel, A. Ö., Arslan, A., & Akgün, M. (2011). Non-uniform stepping approach to RFID distance bounding problem. In J. Garcia-Alfaro, G. Navarro-Arribas, A. Cavalli, & J. Leneutre (Eds.), LNCS: Vol. 6514. Data privacy management and autonomous spontaneous security (DPM 2011) (pp. 64–78). New York: Springer.Google Scholar
  23. 23.
    Čapkun, S., Buttyán, L., & Hubaux, J. P. (2003). SECTOR: Secure tracking of node encounters in multi-hop wireless networks. In Proceedings of the 1th ACM workshop on security of ad hoc and sensor networks, Fairfax, Virginia, USA (pp. 21–32).Google Scholar
  24. 24.
    Yum, D. H., Kim, J. S., Hong, S. J., & Lee, P. J. (2011). Distance bounding protocol for mutual authentication. IEEE Transactions on Wireless Communications, 10(2), 592–601.CrossRefGoogle Scholar
  25. 25.
    Avoine, G., & Kim, C. H. (2013). Mutual distance bounding protocols. IEEE Transactions on Mobile Computing, 12(5), 830–839.CrossRefGoogle Scholar
  26. 26.
    Čagalj, M., Čapkun, S., & Hubaux, J. P. (2006). Key agreement in peer-to-peer wireless networks. Proceedings of the IEEE, 94(2), 467–478.CrossRefGoogle Scholar
  27. 27.
    Rasmussen, K. B., Castelluccia, C., Heydt-Benjamin, T. S., Čapkun, S. (2009). Proximity-based access control for implantable medical devices. In Proceedings of the 16th ACM conference on computer and communications security, Chicago, IL, USA (pp. 410–419).Google Scholar
  28. 28.
    Čagalj, M., Saxena, N., & Uzun, E. (2009). On the usability of secure association of wireless devices based on distance bounding. In J. A. Garay, A. Miyaji, & A. Otsuka (Eds.), LNCS: Vol. 5888. Cryptology and network security (CNS 2009) (pp. 443–462). Heiledberg: Springer.Google Scholar
  29. 29.
    Čapkun, S., Čagalj, M., Karame, G., & Tippenhauer, N. O. (2010). Integrity regions: Authentication through presence in wireless networks. IEEE Transactions on Mobile Computing, 9(11), 1608–1621.CrossRefGoogle Scholar
  30. 30.
    Cremers, C., Rasmussen, K. B., & Čapkun, S. (2012). Distance hijacking attacks on distance bounding protocols. In Proceedings of IEEE symposium on security and privacy (SP 2012), Can Francisco, CA, USA (pp. 113–127).Google Scholar
  31. 31.
    Raymond, J. F., & Stiglic, A. (2002). Security issues in the Diffie–Hellman key agreement protocol, Technical Manuscript. Montreal: McGill University.Google Scholar
  32. 32.
    Jannati, H., & Falahati, A. (2013). Achieving an appropriate security level for distance bounding protocols over a noisy channel. Special Issue on RFID Technology and Applications, Telecommunication Systems.Google Scholar
  33. 33.
    Falahati, A., & Jannati, H. (2012). Application of distance bounding protocols with random challenges over RFID noisy communication systems. In Proceedings of IET conference on wireless sensor systems (WSS 2012), London, UK (pp. 1–5).Google Scholar
  34. 34.
    Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301), 13–30.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electrical Engineering (DCCS Lab)Iran University of Science and TechnologyTehranIran

Personalised recommendations