Skip to main content
Log in

Performance of STTC-MC-CDMA Systems with Imperfect Channel Estimation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Since, in a practical system perfect channel state information (CSI) is not possible due to presence of noise. This paper deals with the performance of space-time trellis code (STTC) in multi-carrier code-division multiple-access systems in presence of channel estimation (CE) error and results are compared with perfect CSI at the receiver. The pilot symbol assisted (PSA) technique is used for CE employing minimum mean-square error method. The symbol error rate (SER) performance is observed by employing Viterbi decoding algorithm to decode STTC code at the receiver in multi-path fading channel. The simulated SER performances in presence of CE error and with perfect CSI are compared with the theoretical performances to validate the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chang, C. L., Huang, P. S., & Te-Ming, Tu. (2006). An integrated analysis for MC-CDMA system with synchronization errors over fading channels. Journal of the Chinese Institute of Engineers, 29(7), 1185–1193.

    Google Scholar 

  2. Juntti, M., Vehkapera, M., et al. (2005). MIMO MC-CDMA communications for future cellular systems. IEEE Communication Magazine, 43(2), 118–124.

    Article  Google Scholar 

  3. Hijazi, S., Natarajan, B., & Wu, Z. (April 2004). Flexible spectrum use and better coexistence at the physical layer of future wireless systems via a multicarrier platform. IEEE Wireless Communications, pp. 64–71.

  4. Sourour, E. A., & Nakagawa, M. (1996). Performance of orthogonal multicarrier CDMA in a multipath fading channel. IEEE Transactions on Communications, 44(3), 356–366.

    Article  MATH  Google Scholar 

  5. Hara, S., & Prasad, R. (1997). Overview of multicarrier CDMA. IEEE Communication Magazine, 35(12), 126–133.

    Article  Google Scholar 

  6. Nago, T. M. H., Zaharia, G., Bougeard, S., & Helard, J. F. (2007). 4-PSK balanced STTC with two transmit antennas. In Proceedings IEEE VTC’07, pp. 1693–1697.

  7. Naguib, A. F., Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). A space-time coding modem for high data-rate wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1459–1478.

    Article  Google Scholar 

  8. Miller, S. L., & Rainbolt, B. J. (2000). MMSE detection of multicarrier CDMA. IEEE Journal on Selected Areas in Communications, 18(11), 2356–2362.

    Article  Google Scholar 

  9. Aktas, E. (2012). Iterative message passing for pilot-assisted multiuser detection in MC-CDMA systems. IEEE Transactions on Communications, 60(11), 3353–3364.

    Article  Google Scholar 

  10. Zheng, D., Xuegui, S., Cheng, J., & Beaulieu, N. C. (2011). Maximum likelihood based channel estimation for macrocellular OFDM uplinks in dispersive time-varying channels. IEEE Transactions on Wireless Communications, 10(1), 176–187.

    Article  Google Scholar 

  11. Wong, K. K., Murch, R. D., & Letaief, K. B. (2002). Performance enhancement of multiuser MIMO wireless communication systems. IEEE Transactions on Communications, 50(12), 1960–1968.

    Article  Google Scholar 

  12. Tarokh, V., Naguib, A., Seshadri, N., & Calderbank, A. R. (1999). Space-time codes for high data rate wireless communication: Performance criterion in the presence of channel estimation errors, mobility, and multiple paths. IEEE Transactions on Communications, 47(2), 199–207.

    Article  MATH  Google Scholar 

  13. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.

    Article  Google Scholar 

  14. Bansal, L. K., & Trivedi, A. (2008). Performance study of space-time Trellis coded MC-CDMA system employing different detection techniques. In Proceedings IEEE, WCSN’08, pp. 137–140.

  15. Yee, N., & Linnartz, J. P. (1994). Wiener filtering of multi-carrier CDMA in Rayleigh fading channel. In Proceedings IEEE PIMRC ‘94, pp. 1344–1347.

  16. Harrold, W. (1989). A new approximation to the symbol error probability for coded modulation schemes with maximum likelihood sequence detection. IEEE Transactions on Communications, 37(4), 340–352.

    Article  Google Scholar 

  17. Bansal, L. K., Trivedi, A., & Gupta, R. (2012). Performance evaluation of downlink space-time coded MC-CDMA systems in presence of channel estimation. ACTA Press’s - Communications, 1, 1–7.

    Google Scholar 

  18. Hammarberg, P., Rusek, F., & Edfors, O. (2012). Iterative receivers with channel estimation for multi-user MIMO-OFDM: Complexity and performance. EURASIP Journal on Wireless Communications and Networking, 75, 1–17.

    Google Scholar 

  19. Trivedi, A., & Gupta, R. (2010). Error rate analysis of uplink MC-CDMA systems under imperfect channel estimation. Springer’s Wireless Personal Communication, 59, 297–312.

    Article  Google Scholar 

  20. Rizaner, A., & Ulusoy, A. H. (2012). Robust channel estimation under impulsive noise for multipath fading CDMA systems. Springer’s Wireless Personal Communication, 69(4), 1427–1433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokesh Kumar Bansal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, L.K., Trivedi, A. & Gupta, R. Performance of STTC-MC-CDMA Systems with Imperfect Channel Estimation. Wireless Pers Commun 75, 49–61 (2014). https://doi.org/10.1007/s11277-013-1347-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1347-x

Keywords

Navigation