Wireless Personal Communications

, Volume 72, Issue 4, pp 2361–2387 | Cite as

Performance Comparison of MIMO-STBC Systems with Adaptive Semiblind Channel Estimation Scheme

  • Ravi Kumar
  • Rajiv Saxena


Wireless communication is now a part of everyday life in the urban areas. Wireless LAN is mostly utilized communication system as an example. These wireless devices are data rate and range limited, for which the scientists are spending great efforts on finding ways to overcome these limitations. Multi input multi output (MIMO) antenna systems are the example through which these limitations have been reduced upto great extent which provides multilayer beamforming, diversity, and spatial multiplexing. Analysis of adaptive semiblind channel estimation scheme for MIMO antenna array systems with different code rate space time block coding (STBC) has been performed using the adaptive pilot assisted modulation scheme proposed earlier. Semi blind channel estimation method provides the best trade-off in terms of bandwidth overhead, computational complexity and latency. The result after using MIMO systems shows higher data rate and longer transmit range without any requirement of additional bandwidth or transmit power. This paper presents the detailed analysis of diversity coding techniques using MIMO antenna systems. Different STBC schemes have been explored and analyzed with the different code rate STBC using MATLAB environment and the simulated results have been compared in the semiblind environment which shows the improvement even in highly correlated antenna arrays, and is found close to the condition when channel state information is known to the channel.


Space time block coding (STBC) OSTBC Multiple input multiple output (MIMO) MIMO-STBC Semiblind channel estimation Blind channel estimation 



The author thankfully acknowledges the support provided by the authorities and management of Jaypee University of Engineering and Technology, Guna, India.


  1. 1.
    IEEE P802.11n/D5.0. (2008, May). IEEE Unapproved Draft Std P802.11n/D5.0.Google Scholar
  2. 2.
    Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Transactions on Selected Areas in Communications, 16(8), 1451–1458.CrossRefGoogle Scholar
  4. 4.
    Molisch, A. (2005). Wireless communications. New York: Wiley-IEEE Press.Google Scholar
  5. 5.
    Gesbert, D., et al. (2003). From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications, 21(3), 281–302.CrossRefGoogle Scholar
  6. 6.
    Wittneben, A. (1991). Basestation modulation diversity for digital simulcast. In 41st IEEE vehicular technology conference, 1991. Gateway to the future technology in motion.Google Scholar
  7. 7.
    Seshadri, N., & Winters, J. H. (1994). Two signaling schemes for improving the error performance of frequency division duplex (FDD) transmission systems using transmitter antenna diversity. International Journal of Wireless Information Networks, 1(1), 49–60.CrossRefGoogle Scholar
  8. 8.
    Foschini, G. J. (1996). Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1(2), 41–59.CrossRefGoogle Scholar
  9. 9.
    Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block coding for wireless communications: Performance results. IEEE Journal on Selected Areas in Communications, 17(3), 451–460.CrossRefGoogle Scholar
  10. 10.
    Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Ganesan, G., & Stoica, P. (2001). Space-time block codes: A maximum SNR approach. IEEE Transactions on Information Theory, 47(4), 1650–1656.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Jafarkhani, H. (2001). A quasi-orthogonal space-time block code. IEEE Transactions on Communications, 49(1), 1–4.CrossRefMATHGoogle Scholar
  13. 13.
    Boariu, A., & Ionescu, D. M. (2003). A class of nonorthogonal rate-one space-time block codes with controlled interference. IEEE Transactions on Wireless Communications, 2(2), 270–276.CrossRefGoogle Scholar
  14. 14.
    Jafarkhani, H. (2005). Space-time coding: Theory and practice. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. 15.
    Kumar, R., & Saxena, R. (2012). Capacity analysis of MIMO spatial channel model using novel adaptive semi blind estimation scheme. Journal of Wireless Networking and Communications, 2(4), 66–76.CrossRefGoogle Scholar
  16. 16.
    Yingwei, Y., & Giannakis, G. B. (2005). Blind carrier frequency offset estimation in SISO, MIMO, and multiuser OFDM systems. IEEE Transactions on Communications, 53(1), 173–183.Google Scholar
  17. 17.
    Xiaoli, M., et al. (2005). Hopping pilots for estimation of frequency-offset and multiantenna channels in MIMO-OFDM. IEEE Transactions on Communications, 53(1), 162–172.CrossRefGoogle Scholar
  18. 18.
    Mielczarek, B., & Krzymień, W. (2010). Comparison of partial CSI encoding methods in multi-user MIMO systems. Wireless Personal Communications, 52(1), 177–193.CrossRefGoogle Scholar
  19. 19.
    Almustafa, K., et al. (2009). On achievable data rates and optimal power allocation in fading channels with imperfect channel state information. Wireless Personal Communications, 50(1), 69–81.CrossRefGoogle Scholar
  20. 20.
    Chen, R., et al. (2012). Robust uniform channel decomposition and power allocation for MIMO systems with imperfect CSI. Wireless Personal Communications, 64(4), 761–781.CrossRefGoogle Scholar
  21. 21.
    Halunga, S. V., & Vizireanu, N. (2010). Performance evaluation for conventional and MMSE multiuser detection algorithms in imperfect reception conditions. Digital Signal Processing, 20(1), 166–178.CrossRefGoogle Scholar
  22. 22.
    Halunga, S. V., Vizireanu, N., & Fratu, O. (2010). Imperfect cross-correlation and amplitude balance effects on conventional multiuser decoder with turbo encoding. Digital Signal Processing, 20(1), 191–200.Google Scholar
  23. 23.
    Ganesan, G., & Stoica, P. (2002). Differential modulation using space-time block codes. IEEE Signal Processing Letters, 9(2), 57–60.CrossRefGoogle Scholar
  24. 24.
    Feifei, G., et al. (2008). Maximum likelihood detection for differential unitary space-time modulation with carrier frequency offset. IEEE Transactions on Communications, 56(11), 1881–1891.CrossRefGoogle Scholar
  25. 25.
    Hughes, B. L. (2000). Differential space-time modulation. IEEE Transactions on Information Theory, 46(7), 2567–2578.CrossRefMATHGoogle Scholar
  26. 26.
    Yun, Z., & Jafarkhani, H. (2005). Differential modulation based on quasi-orthogonal codes. IEEE Transactions on Wireless Communications, 4(6), 3005–3017.CrossRefGoogle Scholar
  27. 27.
    Larsson, E. G., Stoica, P., & Li, J. (2002). On maximum-likelihood detection and decoding for space-time coding systems. IEEE Transactions on Signal Processing, 50(4), 937–944.CrossRefGoogle Scholar
  28. 28.
    Larsson, E. G., Stoica, P., & Jian, L. (2003). Orthogonal space-time block codes: maximum likelihood detection for unknown channels and unstructured interferences. IEEE Transactions on Signal Processing, 51(2), 362–372.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yingxue, L., Georghiades, C. N., & Garng, H. (2001). Iterative maximum-likelihood sequence estimation for space-time coded systems. IEEE Transactions on Communications, 49(6), 948–951.CrossRefMATHGoogle Scholar
  30. 30.
    Gallo, A. S., et al. (2004). BEM-based SISO detection of orthogonal space-time block codes over frequency flat-fading channels. IEEE Transactions on Wireless Communications, 3(6), 1885–1889.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Swindlehurst, A. L., & Leus, G. (2002). Blind and semi-blind equalization for generalized space-time block codes. IEEE Transactions on Signal Processing, 50(10), 2489–2498.CrossRefGoogle Scholar
  32. 32.
    Ammar, N., & Ding, Z. (2007). Blind channel identifiability for generic linear space-time block codes. IEEE Transactions on Signal Processing, 55(1), 202–217.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Shahbazpanahi, S., Gershman, A. B., & Manton, J. H. (2005). Closed-form blind MIMO channel estimation for orthogonal space-time block codes. IEEE Transactions on Signal Processing, 53(12), 4506–4517.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Via, J., & Santamaria, I. (2008). Correlation matching approaches for blind OSTBC channel estimation. IEEE Transactions on Signal Processing, 56(12), 5950–5961.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Via, J., Santamaria, I., & Perez, J. (2009). Code combination for blind channel estimation in general MIMO-STBC systems. EURASIP Journal on Advances in Signal Processing, 2009(1), 103483.CrossRefGoogle Scholar
  36. 36.
    Lamahewa, T., et al. (2007). Spatial precoder design for space-time coded MIMO systems: based on fixed parameters of MIMO channels. Wireless Personal Communications, 43(2), 777–799.CrossRefGoogle Scholar
  37. 37.
    Kumar, R., & Saxena, R. (2012). MIMO capacity analysis using adaptive semi blind channel estimation with modified precoder and decoder for time varying spatial channel. International Journal of Information Technology and Computer Science, 4(10), 1–18.CrossRefGoogle Scholar
  38. 38.
    Vucetic, B., & Yuan, J. (2003). Space-time coding. Chichester: John Wiley and Sons Inc. 302.CrossRefGoogle Scholar
  39. 39.
    Da-Shan, S., et al. (2000). Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Transactions on Communications, 48(3), 502–513.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringJaypee University of Engineering and TechnologyGunaIndia

Personalised recommendations