Skip to main content
Log in

A Fittingness Factor-Based Spectrum Management Framework for Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

An Erratum to this article was published on 20 April 2013

Abstract

In order to increase cognitive radios (CRs) operation efficiency, there has been an increasing interest in strengthening awareness level about spectrum utilisation. In this respect, this paper proposes to exploit the fittingness factor concept to capture the suitability of spectral resources exhibiting time-varying characteristics to support a set of heterogeneous CR applications. First, a new knowledge management functional architecture for optimizing spectrum management has been constructed. It integrates a set of advanced statistics capturing the influence of the dynamic radio environment on the fittingness factor. Then, a knowledge manager (KM) exploiting these statistics to monitor time-varying suitability of spectrum resources has been proposed to support the spectrum selection (SS) decision-making process. In particular, a new Fittingness Factor-based strategy combining two SS and spectrum mobility (SM) functionalities has been proposed, following either a greedy or a proactive approach. Results have shown that, with a proper fittingness factor function, the greedy approach efficiently exploits the KM support at low loads and the SM functionality at high loads to introduce significant gains in terms of the user dissatisfaction probability. The proactive approach has been shown to maintain the introduced performance gain while minimizing the signalling requirements in terms of spectrum handover rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mitola, III, J & Maguire, G. Q, Jr. (1999). Cognitive radio: Making software radios more personal. Personal Communications, IEEE, 6(4), 13–18.

  2. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. Selected Areas in Communications, IEEE Journal on, 23(2), 201–220. doi:10.1109/JSAC.2004.839380.

    Article  Google Scholar 

  3. Thomas, R. W., Friend, D. H., Dasilva, L. A., & Mackenzie, A. B. (2006). Cognitive networks: Adaptation and learning to achieve end-to-end performance objectives. Communications Magazine, IEEE, 44(12), 51–57. doi:10.1109/MCOM.2006.273099.

    Article  Google Scholar 

  4. Kephart, J., & Chess, D. (2003). The vision of autonomic computing. Computer, 36(1), 41–50. doi:10.1109/MC.2003.1160055.

    Article  MathSciNet  Google Scholar 

  5. Demestichas, P., Dimitrakopoulos, G., Strassner, J., & Bourse, D. (2006). Introducing reconfigurability and cognitive networks concepts in the wireless world. Vehicular Technology Magazine, IEEE, 1(2), 32–39. doi:10.1109/MVT.2006.283572.

    Article  Google Scholar 

  6. Demestichas, P., Tsagkaris, K., & Stavroulaki, V. (2010). Cognitive management systems for supporting operators in the emerging Future Internet era. In: Personal, Indoor and Mobile Radio Communications Workshops (PIMRC Workshops), 2010 IEEE 21st International Symposium, pp. 21–25 doi:10.1109/PIMRCW.2010.5670366.

  7. Meshkova, E., Wang, Z., Nasreddine, J., Denkovski, D., Zhao, C., Rerkrai, K., et al. (2011). Using cognitive radio principles for wireless resource management in home networking. In: Consumer communications and networking conference (CCNC), 2011 IEEE, pp. 669–673 doi:10.1109/CCNC.2011.5766566.

  8. The End-to-End-Efficiency (E3) project. https://www.ict-e3.eu/

  9. The ICT EU (Opportunistic Networks and Cognitive Management Systems for Efficient Application Provision in the Future InterneT) OneFIT Project. http://www.ict-onefit.eu/

  10. The Wireless World Research Forum (WWRF), WG6 (working group 6). http://www.wireless-worldresearch.org/

  11. IEEE Standard Coordinating Committee 41 (SCC41). http://grouper.ieee.org/groups/scc41/index.html/

  12. ETSI Technical Committee (TC) on Reconfigurable Radio Systems (RRS). http://www.etsi.org/WebSite/technologies/RRS.aspx

  13. Vartiainen, J., Höyhtyä, M., Lehtomäki, J., & Bräysy, T. (2010). Priority channel selection based on detection history database. In: Crowncom 2010, pp. 1–5.

  14. Acharya, P.A.K., Singh, S., & Zheng, H. (2006). Reliable open spectrum communications through proactive spectrum access. In: Proceedings of the TAPAS.

  15. Li, Y., Dong, Y., Zhang, H., Zhao, H., Shi, H., Zhao, X., et al. (2010). Qos provisioning spectrum decision algorithm based on predictions in cognitive radio networks. In: WiCOM 2010, pp. 1–4 doi:10.1109/WICOM.2010.5601233.

  16. Lee, W. Y., & Akyldiz, I. (2011). A spectrum decision framework for cognitive radio networks. Mobile Computing, IEEE Transactions, 10(2), 161–174. doi:10.1109/TMC.2010.147.

    Article  Google Scholar 

  17. Bouali, F., Sallent, O., Pérez-Romero, J., & Agusti, R. (2011). A framework based on a fittingness factor to enable efficient exploitation of spectrum opportunities in cognitive radio networks. In: Wireless Personal Multimedia Communications (WPMC), 2011 14th International Symposium on, pp. 1–5.

  18. Badia, L., Lindström, M., Zander, J., & Zorzi, M. (2003). Demand and pricing effects on the radio resource allocation of multimedia communication systems. In: GLOBECOM ’03. IEEE, vol. 7, pp. 4116–4121 doi:10.1109/GLOCOM.2003.1259002.

Download references

Acknowledgments

This work is performed in the framework of the European-Union funded project OneFIT (www.ict-onefit.eu). The project is supported by the European Community’s Seventh Framework Program (FP7). The views expressed in this document do not necessarily represent the views of the complete consortium. The Community is not liable for any use that may be made of the information contained herein. The work is also supported by the Spanish Research Council and FEDER funds under ARCO grant (ref. TEC2010-15198) and by the Spanish Ministry of Science and Innovation (MICINN) under FPI grant BES-2009-017934.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faouzi Bouali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouali, F., Sallent, O., Pérez-Romero, J. et al. A Fittingness Factor-Based Spectrum Management Framework for Cognitive Radio Networks. Wireless Pers Commun 72, 1675–1689 (2013). https://doi.org/10.1007/s11277-013-1128-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1128-6

Keywords

Navigation