Wireless Personal Communications

, Volume 72, Issue 2, pp 987–1004 | Cite as

Discrete-time Markov Model for Wireless Link Burstiness Simulations

  • Yantao LiEmail author
  • Daniel Graham
  • Gang Zhou
  • Xin Qi
  • Shaojiang Deng
  • Di Xiao


Link burstiness can negatively affect the performance of wireless networking protocols, by causing an extra of 15 % transmission cost. It describes the underlying behavior of packet delivery and provides insights into tuning protocols to improve performance. In this paper, we propose a discrete-time Markov model to simulate the burstiness behavior of wireless links, which provides a novel approach for link burstiness studies. More specifically, we first present a discrete-time Markov model with the input of \(\beta \) value and the output of a sequence trace of burstiness traffic. Then we design an algorithm to simulate the Markov model, where the state transition represents the packet receptions or losses. Finally, we evaluate the proposed model in terms of distribution of link burstiness, accuracy and cost, and the results demonstrate that our model is able to accurately simulate the burstiness behavior.


Simulation Low power wireless networks Discrete-time Markov model Link burstiness 



This work was supported in part by US National Science Foundation (Grant nos. ECCS-0901437, CNS-0916994), the National Natural Science Foundation of China (Grant nos. 61173178, 61070246, 61003247), the Natural Science Foundation Project of CQ CSTC (Grant No. 2011jjjq40001), the Program for New Century Excellent Talents in University of China (Grant nos. NCET-09-0838, NCET-08-0603), the Fundamental Research Funds for the Central Universities (Grant nos. CDJZR10180002, CDJZR10180003, CDJXS12180004), and the Natural Science Foundation Project of CQ CSTC (Grant nos. 2010BB2047, 2010BB2210, 2009BB2211).


  1. 1.
    Huang, H., Sun, Y., Yang, Q., Zhang, F., Zhang, X., Liu, Y., Ren, J., & Sierra, F. (2010). Integrating neuromuscular and cyber systems for neural control of artificial legs. In IEEE/ACM First International Conference on Cyber-Physical Systems (ICCPS’10), pp. 129–138, April, 2010.Google Scholar
  2. 2.
    Srinivasan, K., Kazandjieva, M. A., Agarwal, S., & Levis, P. (2008). The \(\beta \)-factor: Measuring wireless link burstiness. In Proceedings of the 6th ACM Conference on Embedded Networked Sensor Systems (SenSys’08), pp. 29–41, November 2008.Google Scholar
  3. 3.
    Woo, A., Tong, T., & Culler, D. (2003). Taming the underlying challenges of reliable multihop routing in sensor networks. In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (SenSys’03) November 2003.Google Scholar
  4. 4.
    Karner, W., Nemethova, O., Svoboda, P., & Rupp, M. (2007). Link error analysis and modeling for video streaming cross-layer design in mobile communication networks. ETRI Journal, 29(5), 25–36.CrossRefGoogle Scholar
  5. 5.
    Gandikota, V. R., Tamma, B. R., & Murthy, C. S. R. (2008). Adaptive FEC-based packet loss resilience scheme for supporting voice communication over ad hoc wireless networks. IEEE Transactions on Mobile Computing, 7(10), 1184–1199.CrossRefGoogle Scholar
  6. 6.
    Becher, A., Landsiedel, O., Kunz, G., & Wehrle, K. (2008). Towards short-term wireless link quality estimation. In Proceedings of the Fifth Workshop on Embedded Networked Sensors (HotEmNets’08) pp. 1–5, June 2008.Google Scholar
  7. 7.
    Vutukuru, M., Balakrishnan, H., & Jamieson, K. (2009). Cross-layer wireless bit rate adaptation. In Proceedings of the 2009 Conference on Applications, Technologies, Architectures, and Protocols for Computer, Communication (SIGCOMM’09) August 2009.Google Scholar
  8. 8.
    Aggarwal, R., Schniter, P., & Koksal, C. (2009). Rate adaptation via link-layer feedback for goodput maximization over a time-varying channel. IEEE Transactions on Wireless Communications, 8(8), 4276–4285.CrossRefGoogle Scholar
  9. 9.
    Gilbert, E. N. (1960). Capacity of a burst-noise channel. Bell System Technical Journal, 39, 1253–1266.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jain, R., & Routhier, S. (1986). Packet trains-measurements and a new model for computer network traffic. IEEE Journal on Selected Areas in Communications, 4(6), 986–995.CrossRefGoogle Scholar
  11. 11.
    Mushkin, M., & Bar-David, I. (1989). Capacity and coding for the Gilbert-Elliott channels. IEEE Transactions on Information Theory, 35, 1277–1290.zbMATHCrossRefGoogle Scholar
  12. 12.
    Willig, A. (2002). A new class of packet- and bit-level models for wireless channels. In Proceedings of the 13th IEEE International Symposium On Personal, Indoor and Mobile Radio, Communications (PIMRC’02), pp. 2434–2440, September 2002.Google Scholar
  13. 13.
    Kopke, A., Willig, A., & Karl, H. (2003). Chaotic maps as parsimonious bit error models of wireless channels. In Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’03), pp. 513–523, March–April, 2003.Google Scholar
  14. 14.
    Khayam, S. A., & Radha, H. (2003). Markov-based modeling of wireless local area networks. In Proceedings of the 6th ACM International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems (MSWiM ’03), pp. 100–107, September, 2003.Google Scholar
  15. 15.
    Wang, C. X., & Patzold, M. (2004). A generative deterministic model for digital mobile fading channels. IEEE Communications Letters, 8(4), 223–225.zbMATHCrossRefGoogle Scholar
  16. 16.
    Zhu, W., & Garcia-Frias, J. (2004). Stochastic context-free grammars and gidden Markov models for modeling of Bursty channels. IEEE Transactions on Vehicular Technology, 53(3), 666–676.CrossRefGoogle Scholar
  17. 17.
    Kamthe, A., Carreira-Perpinan, M. A., & Cerpa, A. E. (2009). M &M: Multi-level Markov model for wireless link simulations. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys’09), pp. 57–70, November, 2009.Google Scholar
  18. 18.
    Rusak, T., & Levis, P. (2008). Investigating a physically-based signal power model for robust low power wireless link simulation. In Proceedings of the 11th ACM International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems (MSWiM ’08), pp. 37–46, October 2008.Google Scholar
  19. 19.
    Cai, L., Shen, X., & Mark, J. W. (2009). Multimedia Services in Wireless Internet: Modeling and Analysis. New York: Wiley.CrossRefGoogle Scholar
  20. 20.
    Liu, F., Fan, Y. Shen, X., Lin, C., & Zeng, R. (2010). An Analytical Model to Study the Packet Loss Burstiness over Wireless Channels. In Proceedings of IEEE Global, Communications Society (Globecom’10), pp. 1–5, December 2010.Google Scholar
  21. 21.
    Dong, W., Chen, C., Liu, X., Teng, G., Bu, J., & Liu, Y. (2011). Bulk data dissemination in wireless sensor networks: Modeling and analysis. Computer Networks, 56(11), 2664–2676.CrossRefGoogle Scholar
  22. 22.
    Bas, C. U., & Ergen, S. C. (2012). Spatio-temporal characteristics of link quality in wireless sensor networks. In Proceedings of 2012 IEEE, Wireless Communications and Networking Conference (WCNC’12), pp. 1152–1157, April, 2012.Google Scholar
  23. 23.
    Konrad, A., Zhao, B., Joseph, A., & Ludwig, R. (2003). A Markov-based channel model algorithm for wireless networks. Wireless Networks, 9, 189–199.CrossRefGoogle Scholar
  24. 24.
    Aguayo, D., Bicket, J., Biswas, S., Judd, G., & Morris, R. (2004). Link-level measurements from an 802.11b mesh network. In Proceedings of the 2004 Conference on Applications, Technologies, Architectures, and Protocols for, Computer Communications (SIGCOMM’04), pp. 121–132, August–September, 2004.Google Scholar
  25. 25.
    Allan, D. W. (1987). Time and frequency (time domain) characterization, estimation and prediction of precision clocks and oscillators. IEEE Transactions on UFFC, 34(6), 647–654.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Rusak, T., & Levis, P. (2009). Burstiness and scaling in the structure of low-power wireless links. ACM SIGMOBILE Mobile Computing and Communications Review, 13(1), 60–64.CrossRefGoogle Scholar
  27. 27.
    Alizai, M. H., Landsiedel, O., Link, J. A. B., Gotz, S., & Wehrle, K. (2009). Bursty traffic over bursty links. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys’09), pp. 71–84, November 2009.Google Scholar
  28. 28.
    Munir, S., Lin, S., Hoque, E., Nirjon, S. M. S., Stankovic, J. A., & Whitehouse, K. (2010). Addressing burstiness for reliable communication and latency bound generation in wireless sensor networks. In Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN ’10), pp. 303–314, April 2010.Google Scholar
  29. 29.
    Huang, T., Li, D., Zhang, Z., & Cui, L. (2010). Design of a burst-link-aware routing protocol in wireless sensor networks. In IET 2010 International Conference on, Wireless Sensor Network (IET-WSN’10), pp. 374–379, November 2010.Google Scholar
  30. 30.
    Liu, Y., He, Y., Li, M., Wang, J., Liu, K., & Mo, L. (2011). Does wireless sensor network scale? A Measurement study on GreenOrbs. In Proceedings of the 30th IEEE International Conference on, Computer Communications (INFOCOM’11) pp. 873–881, March 2011.Google Scholar
  31. 31.
    Alizai, M. H., Wirtz, H., Kunz, G., Grap, B., & Wehrle, K. (2011). Efficient online estimation of bursty wireless links. In Proceedings of 2011 IEEE Symposium on Computers and, Communications (ISCC’11), pp. 191–198, June–July 2011.Google Scholar
  32. 32.
    Luo, J., Xu, X., & Zhang, Q. (2011). Understanding link feature of wireless sensor networks in outdoor space: A measurement study. In Proceedings of 2011 IEEE Global Telecommunications Conference (GLOBECOM’11), pp. 1–5, December 2011.Google Scholar
  33. 33.
    Österlind, F., Mottola, L., Voigt, T., Tsiftes, N., & Dunkels, A. (2012). Strawman: Resolving collisions in bursty low-power wireless networks. In Proceedings of the 11th International Conference on Information Processing in Sensor Networks (IPSN’12) pp. 161–172, April 2012.Google Scholar
  34. 34.
    Lee, H., Cerpa, A., & Levis, P. (2007). Improving wireless simulation through noise modeling. In Proceedings of the 6th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN ’07), pp. 21–30, April 2007.Google Scholar
  35. 35.
    Mieghem, P. V. (2006). Performance Analysis of Communications Networks and Systems. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yantao Li
    • 2
    • 1
    Email author
  • Daniel Graham
    • 2
  • Gang Zhou
    • 2
  • Xin Qi
    • 2
  • Shaojiang Deng
    • 3
  • Di Xiao
    • 3
  1. 1.College of Computer and Information ScienceSouthwest UniversityChongqingChina
  2. 2.Department of Computer ScienceThe College of William and MaryWilliamsburgUSA
  3. 3.College of Computer ScienceChongqing UniversityChongqingChina

Personalised recommendations