Wireless Personal Communications

, Volume 73, Issue 1, pp 23–50 | Cite as

Towards Privacy Protection in Smart Grid

  • Sherali Zeadally
  • Al-Sakib Khan Pathan
  • Cristina Alcaraz
  • Mohamad Badra


The smart grid is an electronically controlled electrical grid that connects power generation, transmission, distribution, and consumers using information communication technologies. One of the key characteristics of the smart grid is its support for bi-directional information flow between the consumer of electricity and the utility provider. This two-way interaction allows electricity to be generated in real-time based on consumers’ demands and power requests. As a result, consumer privacy becomes an important concern when collecting energy usage data with the deployment and adoption of smart grid technologies. To protect such sensitive information it is imperative that privacy protection mechanisms be used to protect the privacy of smart grid users. We present an analysis of recently proposed smart grid privacy solutions and identify their strengths and weaknesses in terms of their implementation complexity, efficiency, robustness, and simplicity.


Authentication Confidentiality Energy Privacy Smart grid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McClanahan R. (2003) SCADA and IP: Is network convergence really here?. IEEE Industry Applications Magazine 9(2): 29–36CrossRefGoogle Scholar
  2. 2.
    Fan J., Borlase S. (2009) The evolution of distribution. IEEE Power and Energy Magazine 7(2): 63–68CrossRefGoogle Scholar
  3. 3.
    Farhangi H. (2010) The path of the smart grid. IEEE Power and Energy Magazine 8(1): 18–28MathSciNetCrossRefGoogle Scholar
  4. 4.
    NIST. (2012). NIST framework and roadmap for smart grid interoperability standards, release 2.0. NIST Special Publication 1108R2, February 2012.Google Scholar
  5. 5.
    Mark, J. (2010). New electricity grids may be smart, but not so private—The Denver post. 18 May 2010. Available at: http://www.denverpost.com/business/ci_15106430 (last accessed 2 Oct 2012).
  6. 6.
    U.S. Department of Energy. (2008). Advanced metering infrastructure, white paper. NETL Modern Grid Strategy Powering our 21st-Century Economy, February 2008. Available at: http://www.netl.doe.gov/smartgrid/referenceshelf/whitepapers/AMI%20White%20paper%20final%20021108%20%282%29%20APPROVED_2008_02_12.pdf (last accessed 2 Oct 2012).
  7. 7.
    Federal Energy Regulatory Commission. (2008). Assessment of demand response & advanced metering. Staff Report, December 2008. Available at: http://www.ferc.gov/legal/staff-reports/demand-response.pdf (last accessed 2 Oct 2012).
  8. 8.
    Massoud A., Wollenberg B. (2005) Toward a smart grid: Power delivery for the 21st century. IEEE Power and Energy Magazine 3(5): 34–41CrossRefGoogle Scholar
  9. 9.
    Lu, Z., Lu, X., Wang, W., & Wang, C. (2010). Review and evaluation of security threats on the communication networks in the smart grid. In Proceedings of IEEE military communications conference (pp. 1830–1835).Google Scholar
  10. 10.
    Steven, J., Peterson, G., & Frincke, D. (2010). Smart-grid security issues. IEEE Security and Privacy, 81–85.Google Scholar
  11. 11.
    McDaniel P., McLaughlin S. (2009) Security and privacy challenges in the smart grid. IEEE Security and Privacy 7(3): 75–77CrossRefGoogle Scholar
  12. 12.
    Westin A. (1967) Privacy and freedom. Atheneum, New York, p 7Google Scholar
  13. 13.
    Miller J. (2008) Who are you? The trade-off between information utility and privacy. IEEE Internet Computing 12(4): 93–96CrossRefGoogle Scholar
  14. 14.
    Miller J. (2008) Who are you, part II: More on the trade-off between information utility and privacy. IEEE Internet Computing 12(6): 91–93CrossRefGoogle Scholar
  15. 15.
    Pedersen D. (1982) Personality correlates of privacy. Journal of Psychology 112: 11–14CrossRefGoogle Scholar
  16. 16.
    Brierley, N. (1992). The meaning and use of privacy: A study of young adults. Ph.D. dissertation, The University of Arizona, USA.Google Scholar
  17. 17.
    International Energy Agency. (2011). Technology roadmap: Smart grids. International Energy Agency, April 2011. Available at: http://www.iea.org/papers/2011/smartgrids_roadmap.pdf (last accessed 2 Oct 2012).
  18. 18.
    Kindy, D., & Pathan, A. (2011). A survey on SQL injection: Vulnerabilities, attacks, and prevention techniques. In Proceedings of 15th IEEE symposium on consumer electronics (IEEE ISCE 2011), Singapore.Google Scholar
  19. 19.
    Singh M. (2002) Privacy for telecom services. IEEE Internet Computing 6(1): 4–5CrossRefGoogle Scholar
  20. 20.
    Efthymiou, C., & Kalogridis, G. (2010). Smart grid privacy via anonymization of smart metering data. In 1st IEEE international conference on smart grid communications (pp. 238–243).Google Scholar
  21. 21.
    Siddiqui, F., Zeadally, S., Alcaraz, C., & Galvao, S. (2012). Smart grid privacy: Issues and solutions. In Proceedings of second international workshop on privacy, security, an trust in mobile and wireless systems (MobiPST 2012), Munich, Germany.Google Scholar
  22. 22.
    Cheung, J., Chim, T., Yiu, S., & Li, V. (2011). Credential-based privacy—preserving power request scheme for smart grid network. In IEEE Global telecommunications conference (pp. 1–5).Google Scholar
  23. 23.
    Das, S., Kant, K., & Zhang, N. (2012). Security and privacy in the smart grid. Handbook on Security Cyber-Physical Critical Infrastructure, Chap. 25. Morgan Kaufmann, February 2012.Google Scholar
  24. 24.
    Kalogridis, G., Efthymiou, C., Denic, S., Lewis, T., & Capeda, R. (2010). Privacy for smart meters: Towards undetectable appliance load signatures. In First IEEE international conference on smart grid communications, (pp. 232–237).Google Scholar
  25. 25.
    Johnson, D., & Sinanovic, S. (2012). Symmetrizing the Kullback-Leibler distance. Available at http://www.ece.rice.edu/~dhj/resistor.pdf (last accessed 2 Oct 2012).
  26. 26.
    Kalogridis, G., Efthymiou, C., Denic, S., Lewis, T., & Cepeda, R. (2010). Privacy for smart meters: Towards undetectable appliance load signatures. In Proceedings of the first IEEE international conference on smart grid communications (SmartGridComm) (pp. 232–237).Google Scholar
  27. 27.
    Shannon C. (1949) Communication theory of secrecy systems. Bell System Technical Journal 28(4): 656–715MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Kalogridis, G., Fan, Z., & Basutkar, S. (2011). Affordable privacy for home smart meters. In Proceedings of the Ninth IEEE international symposium on parallel and distributed processing with applications workshops (ISPAW) (pp. 77–84).Google Scholar
  29. 29.
    Toshiba Inc. (2012). Solar power generation. Available at http://www.toshiba.co.jp/env/en/energy/solar.htm (last accessed 2 Oct 2012).
  30. 30.
    Toshiba Inc. (2012). Super-charge ion battery (SCiB^TM). Available at: http://www.toshiba.com/ind/product_display.jsp?id1=821 (last accessed 2 Oct 2012).
  31. 31.
    Fhom, H., Kuntze, N., Rudolph, C., Cupelli, M., Liu, J., & Monti, A. (2010). A user-centric privacy manager for future energy systems. In Proceedings of the international conference on power systems technology (pp. 1–7).Google Scholar
  32. 32.
    Chim, T., Yiu, S., & Li, V. (2010). PASS: Privacy-preserving authentication scheme for smart grid network. In Proceedings of the international conference on power systems technology.Google Scholar
  33. 33.
    Yan, Y., Qian, Y., & Sharif, H. (2011). A secure data aggregation and dispatch scheme for home area networks in smart grid. In Proceedings of IEEE global telecommunications conference (GLOBECOM 2011) (pp. 1–6).Google Scholar
  34. 34.
    Phelps K., Rifa J., Villanueva M. (2005) Rank and kernel of binary Hadamard codes. IEEE Transactions on Information Theory 51(11): 3931–3937MathSciNetCrossRefGoogle Scholar
  35. 35.
    Simmhan, Y., Kumbhare, A., Cao, B., & Prasanna, V. (2011). An analysis of security and privacy issues in smart grid software architectures on clouds. In Proceedings of IEEE international conference on cloud computing (CLOUD) (pp. 582–589).Google Scholar
  36. 36.
    Sankar, L., Kar, S., Tandon, R., & Vincent Poor, H. (2011). Competitive Privacy in the smart grid: An information-theoretic approach. In Proceedings of IEEE international conference on smart grid communications (SmartGridComm) (pp. 220–225).Google Scholar
  37. 37.
    Kalogridis, G., & Denic, S. Z. (2011). Data mining and privacy of personal behavior types in smart grid. In Proceedings of 11th international conference on data mining workshops (ICDMW) (pp. 636–642).Google Scholar
  38. 38.
    Bluman, A. (1997). Elementary statistics: A step by step approach. McGraw-Hill College, ISBN: 978-0256234305.Google Scholar
  39. 39.
    Barenghi, A., & Pelosi, G. (2011). Security and privacy in smart grid infrastructures. In Proceedings of 22nd international workshop on database and expert systems applications (DEXA) (pp. 102–108).Google Scholar
  40. 40.
    Kim, Y., Ngai, E., & Srivastava, M. (2011). Cooperative state estimation for preserving privacy of user behaviors in smart grid. In Proceedings of IEEE international conference on smart grid communications (SmartGridComm) (pp. 178–183).Google Scholar
  41. 41.
    Fhom, H., & Bayarou, K. (2011). Towards a holistic privacy engineering approach for smart grid systems. In Proceedings of 10th IEEE international conference on trust, security and privacy in computing and communications (TrustCom) (pp. 234–241).Google Scholar
  42. 42.
    Lu, R., Liang, X., Li, X., Lin, X., & Shen, X. (2012). EPPA: An efficient and privacy-preserving aggregation scheme for secure smart grid communications. IEEE Transactions on Parallel and Distributed Systems, 23(9), 1621–1631.Google Scholar
  43. 43.
    Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of Eurocrypyt (Lecture Notes in Computer Science), Vol. 1592 (pp. 223–238). Berlin: Springer.Google Scholar
  44. 44.
    Rivest, R. (2012). Lecture notes 15: Voting, homomorphic encryption. Available at: http://www.web.mit.edu/6.857/OldStuff/Fall02/handouts/L15-voting.pdf (last accessed 2 Oct 2012).
  45. 45.
    Menezes, A., Oorschot, P., & Vanstone, S. (1996). Handbook of applied cryptography. CRC Press, ISBN: 0-8493-8523-7.Google Scholar
  46. 46.
    Stavroulakis, P., & Stamp, M. (2010). Handbook of information and communication security. Springer, ISBN 978-3-642-04116-7.Google Scholar
  47. 47.
    Castelluccia, C., Chan, A., Mykletun, E., & Tsudik, G. (2009). Efficient and provably secure aggregation of encrypted data in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN) 5(3).Google Scholar
  48. 48.
    Westhoff, D., Girao, J., & Acharya, M. (2006). Concealed data aggregation for reverse multicast traffic in sensor networks: Encryption, key distribution, and routing adaptation. IEEE Transactions on Mobile Computing, 5(10), 1417–1431.Google Scholar
  49. 49.
    Shi, J., Zhang, R., Liu, Y., & Zhang, Y. (2010). PriSense: Privacy-preserving data aggregation in people-centric urban sensing systems. In Proceedings of IEEE INFOCOM (pp. 1–9).Google Scholar
  50. 50.
    Budka, K., Deshpande, J., Hobby, J., Kim, Y., Kolesnikov, V., & Lee, W., et al. (2010). GERI—Bell labs smart grid research focus: Economic modeling, networking, and security & privacy. In Proceedings of first IEEE international conference on smart grid communications (SmartGridComm) (pp. 208–213).Google Scholar
  51. 51.
    Veeravalli B. (2003) Performance analysis of a generic proxy-based client-server system for World-Wide Web services using a generalized Markov chain model. Journal of High Speed Networks 12(3–4): 111–131Google Scholar
  52. 52.
    Yang, T., Xiong, H., Hu, J., Wang, Y., Xin, W., Deng, Y. et al. (2011). A traceable privacy-preserving authentication protocol for VANETs based on proxy re-signature. In Proceedings of 8th international conference on fuzzy systems and knowledge discovery (FSKD), Vol. 4. (pp. 2217–2221).Google Scholar
  53. 53.
    Kadowaki, K., & Fujita, S. (2009). A dynamic user management in networked consumer electronics via authentication proxies. In Proceedings of international conference on parallel and distributed computing, Applications and Technologies (pp. 195–200).Google Scholar
  54. 54.
    Rial, A., & Danezis, G. (2011). Privacy-preserving smart metering. In Proceedings of the 10th annual ACM workshop on privacy in the electronic society (WPES ’11) (pp. 49–60).Google Scholar
  55. 55.
    Bellare, M., & Goldreich, O. (1993). On defining proofs of knowledge. In Proceedings of CRYPTO ’92 (Lecture Notes in Computer Science), Vol. 740 (pp. 390–420). Berlin: Springer.Google Scholar
  56. 56.
    Perrig A., Szewczyk R., Wen V., Culler D., Tygar J. (2002) SPINS: Security protocols for sensor networks. Wireless Networks 8(5): 521–534CrossRefMATHGoogle Scholar
  57. 57.
    Rajagopalan, S., Sankar, L., Mohajer, S., & Poor, H. (2011). Smart meter privacy: A utility-privacy framework. In Proceedings of IEEE international conference on smart grid communications (SmartGridComm) (pp. 190–195).Google Scholar
  58. 58.
    Gorman, S. (2009) Electricity grid in U.S. Penetrated by spies. The Wall Street Journal.Google Scholar
  59. 59.
    Margolis, J. (2010). From telecom privacy to utility privacy-coping with the needs of law enforcement on smart grid systems. Available at: http://www.narucmeetings.org/Presentations/100214%20Neustar%20NARUC%20Presentation.pdf(last accessed 2 Oct 2012).
  60. 60.
    National Institute of Standards and Technology. (2010). Guidelines for Smart grid cyber security: Privacy and the smart grid, Vol. 2. Cyber Security Working Group, NISTIR 7628, August 2010. Available at: http://csrc.nist.gov/publications/nistir/ir7628/nistir-7628_vol2.pdf (last accessed 10 Nov 2012).
  61. 61.
    U.S. Department of Energy. (2009). DOE awards $620 million for ARRA ‘Smart Grid’ pilot projects, December 10, 2009. Available at: bx.businessweek.com/smart-grid/ (last accessed 2 Oct 2012).Google Scholar
  62. 62.
    Fujioka, A., Okamoto, T., & Ohta, K. (1992). A practical secret voting scheme for large scale elections. In Proceedings of AUSCRYPT ’92: Workshop on the theory and application of cryptographic techniques, LNCS 718, Queensland, Australia, December 1992 (pp. 244–251).Google Scholar
  63. 63.
    Benaloh, J. (1987). Verifiable secret-ballot elections. PhD thesis, Yale University.Google Scholar
  64. 64.
    Reiter M., Rubin A. (1999) Anonymous Web transactions with crowds. Communications of the ACM 42(2): 32–48CrossRefGoogle Scholar
  65. 65.
    Kamat P., Zhang Y., Trappe W., & Ozturk C. (2005). Enhancing source location privacy in sensor network routing. In Proceedings of 25th IEEE international conference on distributed computing systems (ICDCS), Columbus, OH.Google Scholar
  66. 66.
    Jian, Y., Chen, S., Zhang, Z., & Zhang, L. (2007). Protecting receiver-location privacy in wireless sensor networks. In Proceedings of Infocom 2007, Anchorage, AK (pp. 1955–1963).Google Scholar
  67. 67.
    Ma, Z., Manglery, J., Wagner, C., & Bleier, T. (2011). Enhance data privacy in service compositions through a privacy proxy. In Proceedings of ARES 2011, Vienna, Austria (pp. 615–620).Google Scholar
  68. 68.
    Marmol F., Sorge C., Ugus O., Perez G. (2012) Do not snoop my habits: Preserving privacy in the smart grid. IEEE Communications Magazine 50(5): 166–172CrossRefGoogle Scholar
  69. 69.
    Fhom, H., & Bayarou, K. (2011). Towards a holistic privacy engineering approach for smart grid systems. In Proceedings of the 10th IEEE international conference on trust, security, and privacy in computing and communications (TrustCom’11), Changsha, China (pp. 234–241).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Sherali Zeadally
    • 1
  • Al-Sakib Khan Pathan
    • 2
  • Cristina Alcaraz
    • 3
  • Mohamad Badra
    • 3
  1. 1.University of the District of ColumbiaWashingtonUSA
  2. 2.Department of Computer ScienceInternational Islamic University Malaysia (IIUM)Kuala LumpurMalaysia
  3. 3.University of MalagaMalagaSpain

Personalised recommendations