Skip to main content

Ergodic Sum Rate Maximization for Underlay Spectrum Sharing with Heterogeneous Traffic

Abstract

A radio resource allocation framework is proposed for underlay spectrum sharing. The ergodic capacity maximization problem in orthogonal frequency division multiple access-based network on point to multi point transmission is formulated and solved. Heterogeneous traffic is also considered in which two types of traffic is assumed: streaming traffic which has strict delay requirements, and elastic traffic with flexible delay requirements. Considering the effect of channel state information (CSI) imperfection in the evaluation of the secondary users’ expected rate, we further assume that the estimated CSI between the secondary users and secondary base station (secondary channel) is not perfect. Moreover three different cases are considered depending on the availability of the CSI between the secondary base station and the primary receivers (interference channel). Using simulations, we evaluate the impact of streaming traffic and imperfect CSI on the sum capacity of the secondary elastic users for different values of parameter systems.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Haykin S. (2005) Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications 23(2): 201–220

    Article  Google Scholar 

  2. 2

    Peha J. M. (2005) Approaches to spectrum sharing. IEEE Communications Magazine 43(2): 10–12

    Article  Google Scholar 

  3. 3

    Zhao Q., Sadler B. M. (2007) A survey of dynamic spectrum access. IEEE Signal Processing Magazine 24(3): 79–89

    Article  Google Scholar 

  4. 4

    Ho-Van, K., (2012). Performance evaluation of underlay cognitive Multi-hop Networks over Nakagami-m fading channels. Wireless personal communication. doi:10.1007/s11277-012-0690-7.

  5. 5

    Yaacoub E., El-Hajj A. M., Dawy Z. (2010) Weighted ergodic sum-rate maximisation in uplink orthogonal frequency division multiple access and its achievable rate region. IET Communications 4(18): 2217–2229

    MathSciNet  Article  Google Scholar 

  6. 6

    Wang B., Zhao D. (2010) Scheduling for long term proportional fairness in a cognitive wireless network with spectrum underlay. IEEE Transactions on Wireless Communications 9(3): 1150–1158

    Article  Google Scholar 

  7. 7

    Fraimis, I. G., & Kotsopoulos, S. A. (2012). Fair radio resource allocation for MIMO OFDM-based multicast systems. Wireless personal communication. doi:10.1007/s11277-012-0782-4.

  8. 8

    Lun T., Jing-lin Y., Qing L., Qian-bin C., Wang Huan W. (2012) Power allocation with max-min and min-max fairness for cognitive radio networks with imperfect CSI. Wireless Personal Communication 65(3): 671–687

    Article  Google Scholar 

  9. 9

    Del Re, E. Gorni, G. Ronga, L. S., & Suffritti, R. (2009). Resource allocation in cognitive radio networks: A comparison between game theory based and heuristic approaches. Wireless Personal Communication. doi:10.1007/s11277-009-9689-0.

  10. 10

    Le L. B., Hossain E. (2008) Resource allocation for spectrum underlay in cognitive radio networks. IEEE Transactions on Wireless Communications 7(12): 5306–5315

    Article  Google Scholar 

  11. 11

    Song G., Li Y. (2005) Cross-layer optimization for OFDM wireless networks part i: Theoretical framework. IEEE Transactions on Wireless Communications 4(2): 614–624

    MathSciNet  Article  Google Scholar 

  12. 12

    Wong I. C., Evans B. L. (2008) Optimal downlink OFDMA resource allocation with linear complexity to maximize ergodic capacity. IEEE Transactions on Wireless Communications 7(3): 962–971

    Article  Google Scholar 

  13. 13

    Wong I. C., Evans B. L. (2009) Optimal resource allocation in the OFDMA downlink with imprefect channel knowledge. IEEE Transactions on Communications 57(1): 232–241

    Article  Google Scholar 

  14. 14

    Musavian L., Assa S. (2009) Capacity and power allocation for spectrum sharing communications in fading channels. IEEE Transactions on Wireless communications 8((1): 148–156

    Article  Google Scholar 

  15. 15

    Suraweera H. A., Smith P. J., Shafi M. (2010) Capacity limits and performance analysis of cognitive radio with imprefect channel knowledge. IEEE Transactions on Vehicular Technology 59(4): 1811–1822

    Article  Google Scholar 

  16. 16

    Mokari N., Navaie K., Khoshkholgh M. G. (2011) Downlink radio resource allocation in OFDMA spectrum sharing environment with partial channel state information. IEEE Transactions on Wireless Communications 10: 3482–3495

    Article  Google Scholar 

  17. 17

    Dashti, M., Azmi, P., & Navaie, K. Radio resource allocation for OFDMA based underlay cognitive radio networks utilizing weighted ergodic rates. IET Communications (accepted).

  18. 18

    Ghasemi A., Sousa E. S. (2007) Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications 6(2): 649–658

    Article  Google Scholar 

  19. 19

    Tse D., Viswanath P. (2004) Fundamentals of wireless communication. Cambridge University Press, Cambridge

    Google Scholar 

  20. 20

    Mokari N., Javan M. R., Navaie K. (2010) Cross-layer resource allocation in OFDMA systems for heterogeneous traffic with imperfect CSI. IEEE transactions on vehicular technology 59: 1011–1017

    Article  Google Scholar 

  21. 21

    Goldsmith A. J. (2004) Wireless communications. Cambridge University Press, Cambridge

    Google Scholar 

  22. 22

    Yu W., Lui R. (2006) Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Transactions on Communications 54((7): 1310–1322

    Article  Google Scholar 

  23. 23

    Boyd S., Vandenberghe L. (2004) Convex optimization. Cambridge University Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mina Dashti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dashti, M., Azmi, P., Navaie, K. et al. Ergodic Sum Rate Maximization for Underlay Spectrum Sharing with Heterogeneous Traffic. Wireless Pers Commun 71, 589–610 (2013). https://doi.org/10.1007/s11277-012-0832-y

Download citation

Keywords

  • Elastic traffic
  • Streaming traffic
  • Resource allocation
  • Underlay spectrum sharing
  • Cognitive radio